Highly ordered honeycomb films are prepared by breath-figure method using an amphiphilic diblock copolymer of polystyrene-block-polyacrylic acid (PS-b-PAA). By simply cross-linking PS matrix via deep ultraviolet (UV) irradiation, both the solvent and thermal stability of the porous films was significantly improved while retaining the three-dimensional (3D) structures. The film surface wettability was changed from hydrophobicity to hydrophilicity by the formed polar groups during the photochemical process. After 6 h UV cross-linking, the honeycomb structures could be preserved up to 320 degrees C, an increase of more than 200 K as compared to the non-cross-linked films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.11.053DOI Listing

Publication Analysis

Top Keywords

fabrication robust
4
robust honeycomb
4
honeycomb polymer
4
films
4
polymer films
4
films facile
4
facile photochemical
4
photochemical cross-linking
4
cross-linking process
4
process highly
4

Similar Publications

Enhancing the ferroelectric performance of HfZrOfilms by optimizing the incorporation of Al dopant.

Nanotechnology

January 2025

School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road No.28 Xi'an Shannxi Province, Xi'an, Shaanxi, 710049, CHINA.

HfO-based ferroelectric (FE) thin films have gained considerable interest for memory applications due to their excellent properties. However, HfO₂-based FE films face significant reliability challenges, especially the wake-up and fatigue effects, which hinder their practical application. In this work, we fabricated 13.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.

View Article and Find Full Text PDF

Novel Nonaqueous PD/PZ/NMP Absorbent for Energy-Efficient CO Capture: Insights into the Crystal-Phase Regulation Mechanism of the Powdery Product.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.

Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!