This study was aimed to investigate whether the thrombopoietin (rhTPO) may facilitate myelofibrosis or not. The modified Dexter culture system with various concentrations of rhTPO was used to culture the stromal cells in vitro; the proliferative activity of cells was detected by MTT method; the morphologic changes were observed by light and scanning electron microscopy; the staining changes of ALP, PAS, AS-D NCE and IV type collagen were observed by cytochemistry method; the changes of fibronectin, laminin and IV type collagen were assayed by immunohistochemistry method; the cell surface antigens were assayed by flow cytometry. The results indicated that rhTPO could promote the proliferation of stromal cells which was related to the concentrations of rhTPO. Proliferative activity of stromal cells increased with increasing of rhTPO concentration, and was not related to the exposure time. On day 3 stromal cells adhered to the wall, and became oval. On day 7 stromal cells turned to fusiform and scattered dispersively. On day 12 to 14 these cells ranged cyclically and became long fusiform. Cells covered 70%-80% area of bottle bottom at that time. By day 16 to 18 these cells covered more than 90% area of bottom and ranged cyclically. They displayed the same shape as fibroblasts. By light microscopy with Wrights-Giemsa staining, fibroblasts predominated morphologically, few macrophages, endothelial cells and adipose cells were found. There were no significant differences between experimental group and control group. On day 14 to 42 the adherent cells were positive with PAS staining, poorly positive with ALP and naphthol AS-D chloroacetate esterase (AS-D NCE) staining, and the difference in cytochemistry was not significant between two groups. When these cells were dyed with Masson's trichrome and Gomori's staining, neither collagen fibers nor reticular fibers were positive, but fibronectin, laminin, and collagen type IV appeared positive stronger in experimental group than those in control. The expressions of these molecules were not dependent on culture time. By scanning electron microscopy microvilli and fibers on cell surface appeared more and more, monolayer cells evolved into multilayer cells, and newly-formed fibroblasts appeared gradually as culture time prolonged. These alterations were not different among various groups. The expressions of CD34, CD45, CD105, CD106, and CD166 were not affected obviously by rhTPO. It is concluded that rhTPO had no effects on histochemical properties of stromal cells. Fiber staining and scanning electron microscopic examinations revealed that rhTPO can not facilitate fiber formation of stromal cells. But rhTPO may be able to augment the expressions of fibronectin, laminin and collagen type IV of stromal cells. Therefore it is still necessary to follow up the patients for a long time, who have received rhTPO therapy clinically.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stromal cells
36
cells
19
scanning electron
12
fibronectin laminin
12
rhtpo
10
stromal
9
rhtpo facilitate
8
concentrations rhtpo
8
proliferative activity
8
electron microscopy
8

Similar Publications

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).

View Article and Find Full Text PDF

Evaluation of the Effect of Exosomes From Adipose Derived Stem Cells on Changes in GSH/ROS Levels During Skin Photoaging.

Photodermatol Photoimmunol Photomed

January 2025

Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.

Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.

Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.

View Article and Find Full Text PDF

Introduction: The current understanding of colorectal carcinogenesis is based on the adenoma-carcinoma sequence, where genetics, intestinal microbiota changes and local immunity shifts seem to play the key roles. Despite the emerging evidence of dysbiotic intestinal state and immune-cell infiltration changes in patients with colorectal adenocarcinoma, early and advanced adenoma as precursors of colorectal cancer, and carcinoma as the following progression, are rather less studied. The newly colon-site adapted AI-based analysis of immune infiltrates is able to predict long-term outcomes of colon carcinoma.

View Article and Find Full Text PDF

Injuries associated with contemporary life, such as automobile crashes and sports injuries, can lead to large numbers of traumatic neuromuscular injuries that are intimately associated with bone fractures. Regulatory and non-coding RNAs play essential roles in multiple cellular processes, including osteogenic differentiation and bone healing. In this review, we discuss the most recent advances in our understanding of the regulatory and non-coding RNA biology of osteogenic differentiation in stem, stromal and progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!