The protein kinase C (PKC) family of serine/threonine kinases regulates diverse cellular function, including cell death, proliferation and survival. In particular, PKC delta governs the cellular homeostatic response against hypoxic stress. Autophagy, a lysosome-dependent degradative pathway, and apoptosis are two fundamental cellular pathways that respond to stress conditions, such as hypoxia, oxidative stress and nutrient starvation. Recently, we uncovered a novel role for PKC delta in the early stage of hypoxic response where PKC delta activates autophagy by promoting JNK1-mediated Bcl-2 phosphorylation and dissociation of the Bcl-2/Beclin 1 complex. Whereas acute hypoxic stress promotes autophagy, we have previously reported that prolonged hypoxic stress caused the cleavage of PKC delta by caspase-3, resulting in the nuclear translocation of a constitutively active catalytic fragment of PKC delta, PKC delta-CF. Moreover, PKC delta-CF also serves a feed-forward function for the reciprocal PKC delta and caspase-3 proteolytic activation. Here, we discussed the requirement for PKC delta and JNK1 for hypoxia-induced autophagy, and the kinetic relationship among Bcl-2/Beclin 1 interaction, caspase-3 activation and the steady-state level of Beclin 1 during hypoxic exposure. Based on these results, we propose a model for understanding the PKC delta-dependent crosstalk mechanisms between autophagy and apoptosis, both induced by hypoxic stress. These findings collectively support a pivotal role for PKC delta in regulating hypoxic stress with hitherto unappreciated significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743529PMC
http://dx.doi.org/10.4161/auto.5.2.7549DOI Listing

Publication Analysis

Top Keywords

pkc delta
36
hypoxic stress
20
pkc
13
hypoxic
8
regulating hypoxic
8
autophagy apoptosis
8
delta
8
role pkc
8
delta caspase-3
8
pkc delta-cf
8

Similar Publications

This study aimed to evaluate kaempferol's, a dietary flavonoid widely present in plants, potential impact on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms. In this study, 60 adult male rats were used and divided into a control group receiving a standard pellet diet, a kaempferol-treated group receiving kaempferol (250 mg/kg), a high-fat diet (HFD) group receiving HFD, and a kaempferol-treated HFD group. At the end of the experiment, the total lipid profile and liver enzymes were assayed in the serum.

View Article and Find Full Text PDF

Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion.

Cells

November 2024

School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.

SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).

View Article and Find Full Text PDF

This study combines high-throughput screening and virtual molecular docking to identify natural compounds targeting PKC in skin aging. Go 6983, a PKC inhibitor, showed potent suppression of MMP-1 transcription. EGCG was one of the candidates that showed it could significantly lower UVB-induced MMP-1 expression in HaCaT cells, and it had a strong affinity for PKCα.

View Article and Find Full Text PDF

Elaeagnus glabra f. oxyphylla (EGFO), a member of the Elaeagnaceae family, is an evergreen plant distinct from other species in its genus. We previously reported that ethanol extract from EGFO has memory improvement effects in a short-term memory deficit mouse model and anti-inflammatory effects in a microglial cell line.

View Article and Find Full Text PDF

Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!