The goal of this work is to present a systematic Monte Carlo validation study on the clinical implementation of the enhanced dynamic wedges (EDWs) into the Pinnacle(3) (Philips Medical Systems, Fitchburg, WI) treatment planning system (TPS) and QA procedures for patient plan verification treated with EDWs. Modeling of EDW beams in the Pinnacle(3) TPS, which employs a collapsed-cone convolution superposition (CCCS) dose model, was based on a combination of measured open-beam data and the 'Golden Segmented Treatment Table' (GSTT) provided by Varian for each photon beam energy. To validate EDW models, dose profiles of 6 and 10 MV photon beams from a Clinac 2100 C/D were measured in virtual water at depths from near-surface to 30 cm for a wide range of field sizes and wedge angles using the Profiler 2 (Sun Nuclear Corporation, Melbourne, FL) diode array system. The EDW output factors (EDWOFs) for square fields from 4 to 20 cm wide were measured in virtual water using a small-volume Farmer-type ionization chamber placed at a depth of 10 cm on the central axis. Furthermore, the 6 and 10 MV photon beams emerging from the treatment head of Clinac 2100 C/D were fully modeled and the central-axis depth doses, the off-axis dose profiles and the output factors in water for open and dynamically wedged fields were calculated using the Monte Carlo (MC) package EGS4. Our results have shown that (1) both the central-axis depth doses and the off-axis dose profiles of various EDWs computed with the CCCS dose model and MC simulations showed good agreement with the measurements to within 2%/2 mm; (2) measured EDWOFs used for monitor-unit calculation in Pinnacle(3) TPS agreed well with the CCCS and MC predictions within 2%; (3) all the EDW fields satisfied our validation criteria of 1% relative dose difference and 2 mm distance-to-agreement (DTA) with 99-100% passing rate in routine patient treatment plan verification using MapCheck 2D diode array.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/54/2/018 | DOI Listing |
Front Vet Sci
January 2025
Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy of antimicrobials in humans and animals, including those used to control bovine respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. Successful mitigation strategies require an improved understanding of the epidemiology of AMR. Specifically, the relative contributions of antimicrobial use (AMU) and contagious transmission to AMR emergence in animal populations are unknown.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada.
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.
View Article and Find Full Text PDFBackground: Healthcare is a major contributor to global greenhouse gas emissions. Colorectal cancer (CRC) screening is one of the most widely used healthcare services in the US, indicated for approximately 134 million adults. Recommended screening options include fecal immunochemical tests (FITs) every year, CT colonographies (CTCs) every 5 years, or colonoscopies every 10 years.
View Article and Find Full Text PDFClin Neurophysiol Pract
December 2024
NeuRAL Lab, Abbott Neuromodulation, Plano, TX 75024, USA.
Objective: This study aims to investigate the sources of later response in epidural spinal recordings (ESRs) obtained from implanted leads during spinal cord stimulation, a topic has not been widely studied in previous research.
Methods: Two patients with lower back and lower extremity pain underwent SCS implantation with intraoperative neuromonitoring (IONM). The timing of extracted peaks in ESRs and intramuscular electromyography (EMG) recordings were analyzed and compared to a Monte Carlo simulation for synchronization analysis.
ACS Cent Sci
January 2025
Systems Biophysics, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany.
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!