Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53.

J Biol Chem

CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland.

Published: February 2009

Both p53 and its repressor Mdm2 are subject to ubiquitination and proteasomal degradation. We show that knockdown of the deubiquitinating enzyme USP5 (isopeptidase T) results in an increase in the level and transcriptional activity of p53. Suppression of USP5 stabilizes p53, whereas it has little or no effect on the stability of Mdm2. This provides a mechanism for transcriptional activation of p53. USP5 knockdown interferes with the degradation of ubiquitinated p53 rather than attenuating p53 ubiquitination. In vitro studies have shown that a preferred substrate for USP5 is unanchored polyubiquitin. Consistent with this, we observed for the first time in a mammalian system that USP5 makes a major contribution to Lys-48-linked polyubiquitin disassembly and that suppression of USP5 results in the accumulation of unanchored polyubiquitin chains. Ectopic expression of a C-terminal mutant of ubiquitin (G75A/G76A), which also causes the accumulation of free polyubiquitin, recapitulates the effects of USP5 knockdown on the p53 pathway. We propose a model in which p53 is selectively stabilized because the unanchored polyubiquitin that accumulates after USP5 knockdown is able to compete with ubiquitinated p53 but not with Mdm2 for proteasomal recognition. This raises the possibility that there are significant differences in proteasomal recognition of p53 and Mdm2. These differences could be exploited therapeutically. Our study reveals a novel mechanism for regulation of p53 and identifies USP5 as a potential target for p53 activating therapeutic agents for the treatment of cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696100PMC
http://dx.doi.org/10.1074/jbc.M805871200DOI Listing

Publication Analysis

Top Keywords

unanchored polyubiquitin
16
p53
13
usp5 knockdown
12
usp5
10
deubiquitinating enzyme
8
enzyme usp5
8
usp5 accumulation
8
accumulation unanchored
8
activation p53
8
suppression usp5
8

Similar Publications

USP5 inhibits anti-RNA viral innate immunity by deconjugating K48-linked unanchored and K63-linked anchored ubiquitin on IRF3.

PLoS Pathog

January 2025

National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.

Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.

View Article and Find Full Text PDF

Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy.

Biomolecules

June 2024

Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China.

Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation.

View Article and Find Full Text PDF

K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment.

Mol Cell

June 2024

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada. Electronic address:

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains.

View Article and Find Full Text PDF

MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade.

Cell Mol Immunol

October 2023

Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China.

The adaptor molecule MAVS forms prion-like aggregates to govern the RIG-I-like receptor (RLR) signaling cascade. Lys63 (K63)-linked polyubiquitination is critical for MAVS aggregation, yet the underlying mechanism and the corresponding E3 ligases and deubiquitinating enzymes (DUBs) remain elusive. Here, we found that the K63-linked polyubiquitin chains loaded on MAVS can be directly recognized by RIG-I to initiate RIG-I-mediated MAVS aggregation with the prerequisite of the CARD-CARD interaction.

View Article and Find Full Text PDF

Stretching the chains: the destabilizing impact of Cu and Zn ions on K48-linked diubiquitin.

Dalton Trans

August 2023

Istituto di Cristallografia - CNR sede secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy.

Ubiquitin signalling and metal homeostasis play key roles in controlling several physiological cellular activities, including protein trafficking and degradation. While some relationships between these two biochemical pathways have started to surface, our knowledge of their interplay remains limited. Here, we employ a variety of techniques, such as circular dichroism, differential scanning calorimetry, pressure perturbation calorimetry, fluorescence emission, SDS-PAGE, and small-angle X-ray scattering (SAXS) to evaluate the impact of Cu and Zn ions on the structure and stability of K48 linked diubiquitin (K48-Ub), a simple model for polyubiquitin chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!