Tissue-type plasminogen activator (tPA) is a serine protease which cleaves plasminogen to its active form, plasmin. tPA plays a physiologic role in hemostasis, wound healing, and embryogenesis. Therapeutically, recombinant human tPA is used as a thrombolytic in myocardial infarction. Although production of therapeutic quantities of tPA in Chinese hamster ovary (CHO) cells transfected with the human gene for tPA is practical, production costs remain high. One important factor which determines the ultimate cost of tPA (or any other recombinant protein expressed in mammalian cells) is its production level on a per cell basis. We have used postembedding immunocytochemical staining with colloidal gold to study the subcellular localization of tPA in CHO cells expressing recombinant tPA (rCHO) in an effort to understand the factor(s) which might limit secretion. Staining for tPA was evaluated visually and by morphometric analysis and was specific and reproducible. Serially passaged rCHO showed no significant change in staining density over 31 serial passages. Staining density was greatest over dilated cisternae of the rough endoplasmic reticulum and nuclear envelope. Golgi stacks and large acid phosphatase-positive vacuoles (probably lysosomes) were also heavily stained. Staining of lysosomal vacuoles suggested that rCHO might be degrading nascent tPA. Incubation of rCHO with 125I-tPA showed that the cells were not internalizing tPA from the media. These results suggest that rCHO fail to secrete a portion of the tPA they synthesize and that it is degraded in lysosomes. This observation may have important implications on the choice of expression systems for efficient production of large quantities of recombinant proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3181/00379727-198-43294 | DOI Listing |
Adv Sci (Weinh)
January 2025
Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.
View Article and Find Full Text PDFOsteoarthr Cartil Open
March 2025
Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, F-44000, France.
Objective: This study aimed to describe the anatomical landmarks for intervertebral disc (IVD) percutaneous approaches (transpedicular TPA and transannular TAA) using CT scans in humans and dogs for regenerative medicine research.
Method: CT scans of 57 human (30 supine, 27 prone) and 49 canine (29 chondrodystrophic, 20 non-chondrodystrophic) lumbar spines were analyzed. Morphometric data, cutaneous landmarks, and approach angles were measured, with additional sections assessing nerve root distances from TPA routes.
Food Res Int
February 2025
Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Türkiye. Electronic address:
The antioxidant, total phenolic, flavonoid, and anthocyanidin properties of extracts prepared from Cotoneaster frigidus Wall. ex Lindl. "Cornubia" fruit were examined.
View Article and Find Full Text PDFShock
January 2025
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 599 Taylor Road, Room 209, Piscataway, NJ, USA 08854.
Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!