Recent studies have shown that a loss of methylthioadenosine phosphorylase (MTAP) gene expression exerts a tumor-promoting effect, including induction of invasiveness, enhanced cell proliferation, and resistance against cytokines. To date, the molecular mechanisms underlying these effects remain unknown. Since the loss of MTAP expression resulted in induced secretion of 5'-deoxy-5'-(methylthio)adenosine (MTA), we hypothesized that MTA might modulate the observed effects. We first determined MTA levels produced by tumor cells in vitro and in situ by means of stable isotope dilution liquid chromatography tandem mass spectrometry. Subsequently, we revealed induction of matrix metalloproteinase (MMP) and growth factor gene expression in melanoma cells accompanied by enhanced invasion and vasculogenic mimicry. In addition, MTA induced the secretion of basis fibroblast growth factor (bFGF) and MMP3 from fibroblasts and the upregulation of activator protein-1 (AP-1) activity in melanoma cells and fibroblasts. In summary, we demonstrated a tumor-supporting role of MTA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21984DOI Listing

Publication Analysis

Top Keywords

gene expression
8
induced secretion
8
growth factor
8
melanoma cells
8
mta
5
direct tumor
4
tumor microenvironment
4
microenvironment mediated
4
mediated influences
4
influences 5'-deoxy-5'-methylthioadenosine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!