Inorganic nanoparticles for predictive oncology of breast cancer.

Nanomedicine (Lond)

Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.

Published: January 2009

Nanoparticles (NPs) and nanosized objects are being incorporated rapidly into clinical medicine and particularly into the field of medical oncology, including breast cancer. A number of novel methods for breast cancer diagnosis and treatment, which are based on NPs and other nanodevices, are now available for translation into clinical practice. Computer tomography and MRI with iron-based magnetic NPs are promising methods for radiological detection of cancers. Semiconductor fluorescent NPs (quantum dots) are being developed for simultaneous detection and localization of multiple breast cancer biomarkers, enabling the personalization of therapeutic regimens for each patient. Additionally, inorganic NPs can be conjugated with tumor-specific ligands and used for tumor-selective delivery of chemotherapeutic or hormonal agents. NPs bearing tumor-targeted antibodies and oligonucleotides for anticancer gene therapy are a novel and rapidly developing therapeutic approach in oncology. Nab-paclitaxel and liposomal anthracyclines are US FDA-approved NP-based drug-delivery systems that have demonstrated at least equivalent efficacy and decreased toxicity compared with conventional chemotherapeutic agents used in the treatment of breast cancer. This review focuses on recent applications of NPs into predictive oncology of breast cancer with an emphasis placed on the role of inorganic nanosized objects in the diagnosis and treatment of this malignancy.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17435889.4.1.83DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
predictive oncology
8
oncology breast
8
nanosized objects
8
diagnosis treatment
8
nps
7
breast
6
cancer
6
inorganic nanoparticles
4
nanoparticles predictive
4

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!