Aims: The main aim of this study is to better understand the self-aggregation mechanism of amyloid-like elastin-derived fibers in order to design and produce new powerful drugs that will inhibit the onset of 'amyloidosis'.

Materials & Methods: Atomic force microscopy (AFM), Congo Red birefringence assay and Thioflavin T fluorescence measurements were used to demonstrate the amyloid-like behavior of some fragments of elastin protein (exon 30 [EX30] and exon 28 [EX28]). Turbidimetry on apparent absorbance technique was used to investigate the effect either of enhancers or of inhibitors on the amyloidogenic elastin-like peptides. Circular-dichroism spectroscopy was used to study the secondary structures of the peptides.

Results & Discussion: We used Congo Red birefringence assay, Thioflavin T fluorescence measurements and AFM measurements that are used commonly to demonstrate the formation of amyloids. The elastin fibrillogenesis is amyloid-like. Then, the elastin amyloidogenesis is inhibited by particular pentapeptides.

Conclusions: We have reported herein that the fibrillogenesis of elastin-derived EX28 and EX30 polypeptides is facilitated significantly by the effect of sodium taurocholate bile salt and is inhibited by a classical inhibitor of Abeta-amyloid peptide, such as KLVFF, as well as by novel inhibitors, designed by us on the basis of some elastin sequences.

Download full-text PDF

Source
http://dx.doi.org/10.2217/17435889.4.1.31DOI Listing

Publication Analysis

Top Keywords

enhancers inhibitors
8
congo red
8
red birefringence
8
birefringence assay
8
assay thioflavin
8
thioflavin fluorescence
8
fluorescence measurements
8
inhibitors elastin-derived
4
elastin-derived amyloidogenesis
4
amyloidogenesis aims
4

Similar Publications

Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Journey of PROTAC: From Bench to Clinical Trial and Beyond.

Biochemistry

January 2025

Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.

Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein.

View Article and Find Full Text PDF

(PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!