Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin. To test the hypothesis that PAD contributes to destabilization of myelin in MS, we developed a transgenic mouse line (PD2) containing multiple copies of the cDNA encoding PAD2, under the control of the MBP promoter. Using previously established criteria, clinical signs were more severe in PD2 mice than in their normal littermates. The increase in PAD2 expression and activity in white matter was demonstrated by immunohistochemistry, reverse transcriptase-PCR, enzyme activity assays, and increased deimination of MBP. Light and electron microscopy revealed more severe focal demyelination and thinner myelin in the PD2 homozygous mice compared with heterozygous PD2 mice. Quantitation of the disease-associated molecules GFAP and CD68, as measured by immunoslot blots, were indicative of astrocytosis and macrophage activation. Concurrently, elevated levels of the pro-inflammatory cytokine TNF-alpha and nuclear histone deimination support initiation of demyelination by increased PAD activity. These data support the hypothesis that elevated PAD levels in white matter represents an early change that precedes demyelination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590822PMC
http://dx.doi.org/10.1242/dmm.000729DOI Listing

Publication Analysis

Top Keywords

peptidylarginine deiminase
8
central nervous
8
nervous system
8
destabilization myelin
8
pd2 mice
8
white matter
8
myelin
6
pad2
4
deiminase pad2
4
pad2 overexpression
4

Similar Publications

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Objective: Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes.

View Article and Find Full Text PDF

NFE2-driven neutrophil polarization promotes pancreatic cancer liver metastasis progression.

Cell Rep

January 2025

Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China. Electronic address:

Pancreatic cancer liver metastasis is an important factor leading to dismal prognoses. The details of adaptive immune remodeling in liver metastasis, especially the role of neutrophils, remain elusive. Here, combined single-cell sequencing with spatial transcriptomics results revealed that liver metastases exhibit more aggressive transcriptional characteristics and higher levels of immunosuppression compared with the primary tumor.

View Article and Find Full Text PDF

The role of Anti-PAD4, Anti-CarP, and Anti-RA33 antibodies combined with RF and ACPA in predicting abatacept response in rheumatoid arthritis.

Arthritis Res Ther

January 2025

Department of Medical Science and Public Health, Rheumatology Unit, University of Cagliari, Azienda Ospedaliero Universitaria di Cagliari, SS 554 Monserrato (CA), Bivio Sestu, Monserrato, 09042, Italy.

Objectives: To explore the role of newly emerging autoantibodies (AAbs) - peptidyl-arginine deiminase 4 (aPAD4), carbamylated proteins (aCarP), and anti-RA33 (aRA33) - alongside the traditionally assessed rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA), in predicting the response to abatacept (ABT) and its retention rate in rheumatoid arthritis (RA) patients.

Methods: Data from 121 consecutive ABT-treated RA patients were recorded. The RF and ACPA status were retrospectively assessed by reviewing the patients' clinical records.

View Article and Find Full Text PDF

Glycyrrhizic acid reduces neutrophil extracellular trap formation to ameliorate colitis-associated colorectal cancer by inhibiting peptidylarginine deiminase 4.

J Ethnopharmacol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, 519000, China. Electronic address:

Ethnopharmacological Relevance: In traditional Chinese medicine, the radices of Glycyrrhiza uralensis Fisch., known as liquorice, have been used for relieving cough, alleviating pain and harmonizing the actions of all medicinals in a formula. Glycyrrhizic acid (GA), a natural compound derived from licorice, exhibits notable anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!