Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads to highly degenerate ground states and, subsequently, to complex phases of matter, such as water ice, spin ice, and frustrated magnetic materials. Here we report a simple geometrically frustrated system composed of closely packed colloidal spheres confined between parallel walls. Diameter-tunable microgel spheres are self-assembled into a buckled triangular lattice with either up or down displacements, analogous to an antiferromagnetic Ising model on a triangular lattice. Experiment and theory reveal single-particle dynamics governed by in-plane lattice distortions that partially relieve frustration and produce ground states with zigzagging stripes and subextensive entropy, rather than the more random configurations and extensive entropy of the antiferromagnetic Ising model. This tunable soft-matter system provides a means to directly visualize the dynamics of frustration, thermal excitations and defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07595 | DOI Listing |
Nat Commun
December 2024
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
Geometric frustration in two-dimensional Ising models allows for a wealth of exotic universal behavior, both Ising and non-Ising, in the presence of quantum fluctuations. In particular, the triangular antiferromagnet and Villain model in a transverse field can be understood through distinct XY pseudospins, but have qualitatively similar phase diagrams including a quantum phase transition in the (2+1)-dimensional XY universality class. While the quantum dynamics of modestly-sized systems can be simulated classically using tensor-based methods, these methods become infeasible for larger lattices.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Grenoble Alpes, Grenoble INP, CEA, IRIG, PHELIQS, 38000 Grenoble, France.
The antiferromagnetic structure of Yb_{3}Ga_{5}O_{12} is identified by neutron diffraction experiments below the previously known transition at T_{λ}=54 mK. The magnetic propagation vector is found to be k=(1/2,1/2,0), an unusual wave vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system dominated by dipolar interactions and finds echoes with exotic structures theoretically proposed.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA.
Geometric frustration is a fundamental concept in various areas of physics, and its role in self-assembly processes has recently been recognized as a source of intricate self-limited structures. Here we present an analytic theory of the geometrically frustrated self-assembly of regular icosahedral nanoparticle based on the non-Euclidean crystal {3,5,3} formed by icosahedra in hyperbolic space. By considering the minimization of elastic and repulsion energies, we characterize prestressed morphologies in this self-assembly system.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel.
Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!