Mesenchymal stem cells produce proinflammatory cytokines during their normal growth. Direct or indirect regulation of bone resorption by these cytokines has been reported. However, the effects of osteogenic conditions-chemical and/or mechanical-utilized during in vitro bone tissue engineering on expression of cytokines by hMSCs have not been studied. In this study, we investigated the effects of cyclic tensile strain, culture medium (with and without dexamethasone), and culture duration on the expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and interleukin-8 (IL-8) by bone marrow derived human mesenchymal stem cells (hMSCs). Human MSCs seeded in three-dimensional Type I collagen matrices were subjected to 0%, 10%, and 12% uniaxial cyclic tensile strains at 1 Hz for 4 h/day for 7 and 14 days in complete growth or dexamethasone-containing osteogenic medium. Viability of hMSCs was maintained irrespective of strain level and media conditions. Expression of either TNF-alpha or IL-1 beta was not observed in hMSCs under any of the conditions investigated in this study. Expression of IL-6 was dependent on culture medium. An increase in IL-6 expression was caused by both 10% and 12% strain levels. Both 10% and 12% strain levels caused an increase in IL-8 production by hMSCs that was dependent on the presence of dexamethasone. IL-6 and IL-8 expressions by hMSCs were induced by cyclic tensile strain and osteogenic differentiating media, indicating that IL-6 and IL-8 may be functioning as autocrine signals during osteogenic differentiation of hMSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21653DOI Listing

Publication Analysis

Top Keywords

cyclic tensile
16
mesenchymal stem
12
stem cells
12
tensile strain
12
10% 12%
12
proinflammatory cytokines
8
human mesenchymal
8
culture medium
8
il-1 beta
8
12% strain
8

Similar Publications

Laboratory Investigation on Dynamic Complex Modulus of FRPU Composite.

Materials (Basel)

December 2024

FlexAndRobust Systems Ltd., 24 Warszawska Str., 31-155 Cracow, Poland.

Civil engineering structures are subject to both static and dynamic loadings. This applies especially to buildings in seismic areas as well as bridges, viaducts, and road and railway structures loaded with road or rail traffic. One of the solutions used to repair and strengthen such structures in the event of emergency damage are fibre-reinforced polyurethanes (FRPUs).

View Article and Find Full Text PDF

Reinforcing chemically treated human hair with citric acid.

Int J Cosmet Sci

January 2025

L'Oréal Research & Innovation, Aulnay-sous-Bois, France.

Article Synopsis
  • The study aimed to analyze how citric acid (CA) reinforces chemically treated hair by evaluating its effects on different treatment types like bleaching and perming.
  • Various physical and chemical testing methods showed that CA significantly enhances hair's structural integrity, increases its mechanical properties, and reduces harmful calcium levels in the hair.
  • Results suggest that the effectiveness of CA is influenced by the specific type of prior chemical treatment, with implications for improving hair care products that target damaged hair.
View Article and Find Full Text PDF

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.

View Article and Find Full Text PDF

Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair.

Biomater Adv

December 2024

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.

View Article and Find Full Text PDF

Self-Etching Pd-Pb Nanoparticles with Controllable Tensile Strain for C Alcohol Oxidation.

ACS Appl Mater Interfaces

December 2024

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.

Pd-based nanocatalysts hold significant promise for application in alkaline direct ethanol fuel cells (DEFCs). To address the challenges of low Pd atom utilization and poor reaction kinetics in conventional Pd-based catalysts, a self-etching strategy has been developed to synthesize PdPb nanoparticles (NPs) with tunable size and abundant tensile strain. The nanoparticles demonstrated a markedly enhanced electrocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!