Several types of brain injury incurred during carotid artery stenting (CAS), such as embolic injury, hemodynamic events, and hemorrhage. Rapid differential diagnosis is important for decision making, and may help to avoid subsequent complications. Here, we describe a case with severe triple vessel coronary artery disease, who underwent right coronary artery (RCA) stenting and ad hoc left CAS. Patient developed neurological deficit two hours after the procedure. Brain computed tomography (CT) revealed diffuse cortical enhancement similar to subarachnoid hemorrhage (SAH). Patient recovered dramatically with complete resolution of contrast enhancement after four days of conservative treatment, final diagnosis was a rare reported case of transient contrast encephalopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ccd.21779 | DOI Listing |
Magn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Cryobiology
January 2025
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:
Osmotic stresses during cryoprotectant loading induce changes in cellular volume, leading to membrane damage or even cell death. Appropriate model-guided mitigation of these osmotic gradients during cryoprotectant loading is currently lacking, but would be highly beneficial in reducing viability loss during the loading process. To address this need, we reformulate the two-parameter formalism described by Jacobs and Stewart for cryoprotectant loading under the constraint of constant cell volume.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA. Electronic address:
Contrasting findings are presented in the literature regarding the influence of foreign body response (FBR) on drug release from implantable drug delivery systems. To this end, here we sought direct evidence of the effect of the fibrotic tissue on subcutaneous drug release from long-acting drug delivery implants. Specifically, we investigated the pharmacokinetic impact of fibrotic encapsulation on a small molecule drug, islatravir (293 Da), and a large protein, IgG (150 kDa), administered via biocompatible implants.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Ultrasound Medical, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Background: The objective of this study was to comprehensively review the literature on Shear Wave Elastography (SWE), a non-invasive imaging technique prevalent in medical ultrasound. SWE is instrumental in assessing superficial glandular tissues, abdominal organs, tendons, joints, carotid vessels, and peripheral nerve tissues, among others. By employing bibliometric analysis, we aimed to encapsulate the scholarly contributions over the past two decades, identifying key research areas and tracing the evolutionary trajectory of SWE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!