Regeneration of skin and cornea by tissue engineering.

Methods Mol Biol

Experimental Organogenesis Laboratory/LOEX and Department of Surgery and Ophthalmology, Laval University, Sainte-Foy, Quebec, Canada.

Published: February 2009

AI Article Synopsis

  • Advances in tissue engineering enable the creation of skin substitutes using the patient's own cells, which can regenerate functionally over time.
  • While current cultured skin epithelial sheets only replace the outer skin layer (epidermis) and lack dermal strength, researchers have developed a more comprehensive reconstructed skin that includes both the dermis and epidermis utilizing a self-assembly method.
  • This chapter outlines detailed protocols for generating both reconstructed skin and corneal epithelium suitable for grafting, including the extraction and culture methods for necessary cell types.

Article Abstract

Progress in tissue engineering has led to the development of technologies allowing the reconstruction of autologous tissues from the patient's own cells. Thus, tissue-engineered epithelial substitutes produced from cultured skin epithelial cells undergo long-term regeneration after grafting, indicating that functional stem cells were preserved during culture and following grafting. However, these cultured epithelial sheets reconstruct only the upper layer of the skin and lack the mechanical properties associated to the connective tissue of the dermis. We have designed a reconstructed skin entirely made from human cutaneous cells comprising both the dermis and the epidermis, as well as a well-organized basement membrane by a method named the self-assembly approach. In this chapter, protocols to generate reconstructed skin and corneal epithelium suitable for grafting are described in details. The methods include extraction and culture of human skin keratinocytes, human skin fibroblasts as well as rabbit and human corneal epithelial cells, and a complete description of the skin reconstructed by the self-assembly approach and of corneal epithelium reconstructed over a fibrin gel.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-060-7_15DOI Listing

Publication Analysis

Top Keywords

tissue engineering
8
epithelial cells
8
reconstructed skin
8
self-assembly approach
8
corneal epithelium
8
human skin
8
skin
7
cells
5
regeneration skin
4
skin cornea
4

Similar Publications

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Bioabsorbable internal fixation is a well-accepted modality that is especially suitable for application in craniosynostosis. When first introduced, high rates of adverse tissue reactions were observed that have since been ameliorated with more biocompatible polymer formulations. However, the phenomenon has not entirely disappeared, and such reactions remain vexing.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!