Prolonged chemoconvulsant-induced status epilepticus in rats has long been promoted as an animal model of mesial temporal lobe epilepsy with hippocampal sclerosis, under the assumption that these animals involve: (1) pathology similar to that of the human neurologic condition; (2) a seizure-free, "preepileptic" latent period of several weeks duration after injury, during which a secondary epileptogenic process gradually develops; and (3) a chronic epileptic state in which the hippocampus, in general, and the dentate gyrus, in particular, becomes a source of the spontaneous behavioral seizures that define these animals as "epileptic." Retrospective analysis suggests that all of these assumptions are in doubt. Neuropathologic studies have shown that prolonged status epilepticus causes greater extrahippocampal than hippocampal damage, and does not produce classic hippocampal sclerosis. In vivo electrophysiologic studies suggest that the hippocampus of these animals may not be "epileptic." Most importantly, studies using continuous video monitoring to detect spontaneous behavioral seizures indicate that these rats become epileptic soon after insult, before any delayed secondary processes have time to develop. High mortality, significant variability, and the lack of an extended "therapeutic window" after brain injury suggest the need to develop animal models that more closely resemble the human neurologic condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1167.2008.01931.x | DOI Listing |
Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids.
View Article and Find Full Text PDFTemporal lobe epilepsy with hippocampal sclerosis (TLE-HS) is associated with a complex genetic architecture, but the translation from genetic risk factors to brain vulnerability remains unclear. Here, we examined associations between epilepsy-related polygenic risk scores for HS (PRS-HS) and brain structure in a large sample of neurotypical children, and correlated these signatures with case-control findings in in multicentric cohorts of patients with TLE-HS. Imaging-genetic analyses revealed PRS-related cortical thinning in temporo-parietal and fronto-central regions, strongly anchored to distinct functional and structural network epicentres.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Department of Biological Sciences, Delaware State University, Dover, DE, United States.
Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
NEUROFARBA Department, Neurosciences Section, University of Florence, Florence, Italy.
Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.
Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.
Med Sci (Basel)
January 2025
Department of Medical Genetics, Clinical Neurophysiology of Postgraduate Education, V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Russian National Research, Krasnoyarsk 660022, Russia.
: Epilepsy is a group of disorders characterized by a cluster of clinical and EEG signs leading to the formation of abnormal synchronous excitation of neurons in the brain. It is one of the most common neurological disorders worldwide; and is characterized by aberrant expression patterns; both at the level of matrix transcripts and at the level of regulatory RNA sequences. Aberrant expression of a number of microRNAs can mark a particular epileptic syndrome; which will improve the quality of differential diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!