In response to the growing need for metal oxide nanotubes and nanowires for nanoelectronic applications, polycrystalline titanate nanotubes are synthesized in this work at near-ambient conditions without the application of an external electric field or pre-existing solids. Nanotubes of complicated metal oxides including strontium titanate and barium titanate are fabricated inside anodic aluminum oxide (AAO) templates from aqueous solutions using a simple, inexpensive, reproducible, and environmentally friendly procedure. The deposition solution is prepared by dissolving ammonium hexafluorotitanate and strontium nitrate in a boric acid solution at a pH of 2.5. The typical lengths of SrTiO(3) nanotubes are 5-30 microm, with an average diameter of approximately 250 nm, which is defined by the pore diameter of the AAO template. After annealing at 800 degrees C in air, the resulting nanotubes are polycrystalline cubic SrTiO(3). The Sr:Ti ratio in the nanotube is controlled by the hydrolysis of TiF(6)(2-) ions, and the concentration of Sr(2+) and stoichiometric SrTiO(3) nanotubes can be obtained. As an additional controlling factor, the surface properties of the AAO can be modified by (octadecyl)trichlorosilane. Barium titanate is also prepared in a similar manner with barium nitrate and ammonium hexafluorotitanate as precursors. The polycrystalline cubic BaTiO(3) nanotubes are 12-30 microm long and approximately 250 nm in diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic8018887DOI Listing

Publication Analysis

Top Keywords

nanotubes
8
batio3 nanotubes
8
barium titanate
8
ammonium hexafluorotitanate
8
srtio3 nanotubes
8
polycrystalline cubic
8
template-based fabrication
4
srtio3
4
fabrication srtio3
4
srtio3 batio3
4

Similar Publications

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Transforming an ATP-dependent enzyme into a dissipative, self-assembling system.

Nat Chem Biol

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!