Functional oligomers based on glutathione (GSH) and poly(ethylene glycol) diacrylate (PEGDA) were synthesized via Michael addition. Well-defined, spherical nanoparticle self-assembly was confirmed via dynamic light scattering and transmission electron microscopy. In addition, a series of Michael addition oligomers containing GSH were prepared with various molecular weights of poly(ethylene glycol) (PEG). Thermal analysis indicated that the oligomers were thermally stable to approximately 160 degrees C, and the Tg increased as the PEG molecular weight increased. In addition, thiol-terminated PEG was synthesized and reacted with GSH to form disulfide-linked oligomers to probe potential antioxidant therapies. SH-SY5Y cells were utilized in cell culture experiments, and hydrogen peroxide induced oxidative stress on the cells. Disulfide-linked GSH oligomers were 100% effective at protecting SH-SY5Y cells from oxidative stress, whereas the Michael addition GSH oligomers did not offer protection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm801058jDOI Listing

Publication Analysis

Top Keywords

michael addition
12
polyethylene glycol
8
sh-sy5y cells
8
oxidative stress
8
gsh oligomers
8
oligomers
6
gsh
5
addition
5
synthesis characterization
4
characterization polyethylene
4

Similar Publications

Patterning soft materials with cell adhesion motifs can be used to emulate the structures found in natural tissues. While patterning in tissue is driven by cellular assembly, patterning soft materials in the laboratory most often involves light-mediated chemical reactions to spatially control the presentation of cell binding sites. Here we present hydrogels that are formed with two responsive crosslinkers-an anthracene-maleimide adduct and a disulfide linkage-thereby allowing simultaneous or sequential patterning using force and UV light.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

Glaucoma poses a growing health challenge projected to escalate in the coming decades. However, current automated diagnostic approaches on Glaucoma diagnosis solely rely on black-box deep learning models, lacking explainability and trustworthiness. To address the issue, this study uses optical coherence tomography (OCT) images to develop an explainable artificial intelligence (XAI) tool for diagnosing and staging glaucoma, with a focus on its clinical applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!