Striga hermonthica is a root hemiparasite of cereals that causes devastating loss of yield. Recently, a rice cultivar, Nipponbare, was discovered, which exhibits post-attachment resistance to this parasite and quantitative trait loci (QTL) associated with the resistance were identified. Changes in gene expression in susceptible (IAC 165) and resistant (Nipponbare) rice cultivars were profiled using rice whole-genome microarrays. In addition to a functional categorization of changes in gene expression, genes that were significantly up-regulated within resistance QTL were identified. The resistance reaction was characterized by up-regulation of defence genes, including pathogenesis-related proteins, pleiotropic drug resistance ABC transporters, genes involved in phenylpropanoid metabolism and WRKY transcription factors. These changes in gene expression resemble those associated with resistance to microbial pathogens. Three genes encoding proteins of unknown function, within a major resistance QTL on chromosome 12, were highly up-regulated and are excellent candidate resistance genes. The susceptible interaction was characterized by large-scale down-regulation of gene expression, particularly within the functional categories plant growth regulator signalling and metabolism, biogenesis of cellular components and cell division. Up-regulated genes included nutrient transporters, enzymes of amino acid metabolism and some abiotic stress genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2008.02484.xDOI Listing

Publication Analysis

Top Keywords

gene expression
20
changes gene
12
rice cultivars
8
striga hermonthica
8
resistance
8
associated resistance
8
resistance qtl
8
genes
7
gene
5
expression
5

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!