In today's developing world, how do we define a "developing country"? What level of effort and resources is invested in diagnosis, patient care, and research in those countries that we define to be developing? In particular, what is the situation with respect to molecular genetic testing in these countries? How much has been achieved to date, and what are the challenges to further achievements? This article describes the current status, challenges, and future hopes with respect to molecular genetic testing in hemostasis and thrombosis from the perspective of experts from three countries: Brazil, Colombia, and Iran. These individuals have lived and practiced genetic testing in their countries and have also had the experience to work and/or interact with the developed world to enable an appreciation of the difference.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0028-1103368DOI Listing

Publication Analysis

Top Keywords

genetic testing
16
molecular genetic
12
testing hemostasis
8
hemostasis thrombosis
8
respect molecular
8
testing
4
thrombosis developing
4
countries
4
developing countries
4
countries achievements
4

Similar Publications

: RAS guanyl-releasing protein 1 (RASGRP1) deficiency is characterized by immune dysregulation and Epstein-Barr virus (EBV)-related lymphoproliferation. Diffuse mesangial sclerosis is one of the infrequent causes of infantile nephrotic syndrome. : Here, we described a 7-year-old girl who was diagnosed with diffuse mesangial sclerosis at 5 months old and subsequently developed chronic bilateral neck swelling at the age of 3 years.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.

Background: Whilst numerous studies have explored the relationship between Alzheimer's disease (AD) and diabetes, there remains significant conflicting evidence as to their relationship. Some studies suggest an increased likelihood of developing AD in individuals with diabetes, especially type 2 diabetes (T2D) and that both diseases share pathological features. In contrast, other studies indicate that T2D is more aligned with vascular cognitive impairment and dementia and associated cerebrovascular/white matter pathology.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) incidence is almost double in female than male, suggesting sex-specific AD risk genes remain unknown.

Method: We designed a statistical physics approach that exploits freely available but massive evolutionary and phylogenetic coupling data on sequence variation and speciation. These couplings lead to quantifiable values for the selection pressure exerted on the genes within a population.

View Article and Find Full Text PDF

Background: Mitochondrial bioenergetics are essential for cellular function, specifically the intricacies of the electron transport chain (ETC), with Complex IV playing a crucial role in unraveling the mechanisms governing energy production. Mathematical models offer a valuable approach to simulate these complex processes, providing insights into normal mitochondrial function and aberrations associated with various diseases, including neurodegenerative disorders. Our research focuses on introducing and refining a mathematical model, emphasizing Complex IV in the ETC, with objectives including incorporating mitochondrial activity modulation using inhibiting and uncoupling reagents, akin to oxygen consumption experiments.

View Article and Find Full Text PDF

Background: Previously, the Penn Frontotemporal Degeneration (FTD) Center developed and validated criteria to stratify pedigrees of patients with FTD by likelihood of identifying a genetic etiology (Wood, JAMA Neurol., 2013). Pedigrees were classified as high-risk, medium-risk, low-risk, apparent sporadic, or unknown significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!