A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanisms of traumatic rupture of the aorta and associated peri-isthmic motion and deformation. | LitMetric

AI Article Synopsis

  • This study explored how traumatic rupture of the aorta (TRA) occurs by testing eight human cadavers under various blunt force impacts.
  • Using high-speed imaging, researchers documented how the aorta moves and deforms during these impacts, notably observing TRA in seven out of the tests.
  • Key findings indicate that aortic stretching due to thoracic deformation is a primary factor in TRA, with conditions like atherosclerosis increasing the risk of injury.

Article Abstract

This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 +/- 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur. The presence of atherosclerosis was demonstrated to promote injury. The isthmus of the aorta moved dorsocranially during frontal impact and submarining loading modes. The aortic isthmus moved medially and anteriorly during impact to the left side. The results of this study provide a better understanding of the mechanisms associated with TRA, and can be used for the validation of finite element models developed for the examination and prediction of TRA.

Download full-text PDF

Source
http://dx.doi.org/10.4271/2008-22-0010DOI Listing

Publication Analysis

Top Keywords

mechanisms traumatic
8
traumatic rupture
8
rupture aorta
8
loading modes
8
stretch aorta
8
aorta
7
aorta associated
4
associated peri-isthmic
4
peri-isthmic motion
4
motion deformation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!