siRNA and DNA transfer to cultured cells.

Methods Mol Biol

Mirus Bio Corporation, 505 S. Rosa Road, Madison, WI 53719, USA.

Published: January 2009

Transfection is a powerful non-viral technology used to deliver foreign nucleic acids into eukaryotic cells, and is the method of choice for a variety of applications including studying the functional role of particular genes and the proteins they code for. By over-expressing genes to produce protein of interest and also by knocking down specific genes, researchers are able to accurately define the role of genes and the protein they encode in various cellular processes. Therefore, this powerful technology is a very vital component of the array of scientific research tools. However, the exact mechanism of action of transfection and also the numerous factors that influence the success of DNA or RNA delivery processes are not clearly understood. Hence, this chapter attempts to explain some of the popular cationic lipid/polymer-based transfection reagents for in vitro DNA/small inhibitory RNA (siRNA) delivery, mainly focusing on the protocols and critical factors to keep in mind to ensure successful delivery of nucleic acids into eukaryotic cells using these methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-429-2_3DOI Listing

Publication Analysis

Top Keywords

nucleic acids
8
acids eukaryotic
8
eukaryotic cells
8
role genes
8
sirna dna
4
dna transfer
4
transfer cultured
4
cultured cells
4
cells transfection
4
transfection powerful
4

Similar Publications

Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.

View Article and Find Full Text PDF

Exploring vimentin's role in breast cancer via PICK1 alternative polyadenylation and the miR-615-3p-PICK1 interaction.

Biofactors

January 2025

Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.

Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).

View Article and Find Full Text PDF

Lipoprotein(a) and Atrial Fibrillation: Mechanistic Insights and Therapeutic Approaches.

Int J Med Sci

January 2025

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.

Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.

View Article and Find Full Text PDF

Adenylate cyclase family members have recently received attention as novel therapeutic targets. However, the significance of adenylate cyclase 9 (ADCY9) in breast cancer has not been elucidated. Here, we evaluated expression in breast cancer (BC) cell lines, and polymerase chain reaction array analysis was performed to determine the correlations between expression levels and 84 tumor-associated genes.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!