Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycosidases are very important enzymes involved in a variety of biochemical processes with a special importance to biotechnology, food industry, and pharmacology. Novel structurally simple inhibitors derived from cyclohexane-1,2-dicarboxylic acids were synthesized and tested against several fungal glycosidases from Aspergillus oryzae and Penicilliumcanescens. The presence of at least two carboxylic groups and one hydroxy group was essential for efficient inhibition. Significant selective inhibition was observed for alpha- and beta-glucosidases, the magnitude of which depended on the configuration of substituents; inhibition increased for beta-glucosidase by lengthening the alkoxy group of the inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2008.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!