A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. | LitMetric

AI Article Synopsis

  • A new technique for growing carbon nanotubes (CNTs) was used to create a highly efficient microfabricated gas chromatography (micro-GC) chip, featuring a 30-cm channel with a CNT mat as the stationary phase.
  • The micro-GC chip operates effectively at lower temperatures and pressures, providing improved chemical separation compared to previous models, aided by a high-speed diaphragm valve for injections and a FID for detection.
  • With a uniform CNT layer of about 800 nm, the chip achieved significant separation efficiency for a mix of five n-alkanes, demonstrating rapid temperature programming and high peak capacity within a short time frame.

Article Abstract

A new growth recipe for producing carbon nanotubes (CNTs) combined with a new bonding technique was implemented in a microfabricated gas chromatography (micro-GC) chip. Specifically, the micro-GC chip contained a 30-cm (length) microfabricated channel with a 50 microm x 50 microm square cross-section. A CNT stationary phase "mat" was grown on the bottom of the separation channel prior to the chip bonding. Injections onto the micro-GC chip were made using a previously reported high-speed diaphragm valve technique. A FID was used for detection with a high-speed electrometer board. All together, the result was a highly efficiency, temperature programmable (via low thermal mass, rapid on-chip resistive heating) micro-GC chip. In general, the newly designed micro-GC chip can be operated at significantly lower temperature and pressure than our previously reported micro-GC chip, while producing excellent chemical separations. Scanning electron microscopy (SEM) images show a relatively thin and uniform mat of nanotubes with a thickness of approximately 800 nm inside the channel. The stationary phase was further characterized using Raman spectroscopy. The uniformity of the stationary phase resulted in better separation efficiency and peak symmetry (as compared to our previous report) in the separation of a mixture of five n-alkanes (n-hexane, n-octane, n-nonane, n-decane and n-undecane). The on-chip resistive heater employing a temperature programming rate of 26 degrees C/s produced a peak capacity of eight within a 1.5-s time window.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2008.09.023DOI Listing

Publication Analysis

Top Keywords

micro-gc chip
24
stationary phase
16
temperature programmable
8
gas chromatography
8
chip
8
on-chip resistive
8
micro-gc
6
high-speed temperature
4
programmable gas
4
chromatography utilizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!