Reliable optical measurement of water vapor in highly scattering environment.

Spectrochim Acta A Mol Biomol Spectrosc

School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Republic of Korea.

Published: April 2009

AI Article Synopsis

  • A measurement scheme using tunable diode laser spectroscopy was developed to accurately detect water vapor concentrations, unaffected by scattering from non-water particles in a humidity chamber.
  • The technique measures relative water vapor concentration at a specific transition band using a 938 nm distributed feedback diode laser across various temperatures.
  • Experimental results demonstrate that the water vapor concentrations obtained are consistent and independent of the amount of scattering caused by dust particles.

Article Abstract

Based on tunable diode laser spectroscopy with direct absorption measurement, we developed a reliable measurement scheme which can precisely detect water vapor concentration independent of the scattering (attenuation) caused by the non-water dust particles inside the observed humidity chamber. The relative water vapor concentration was measured at 2nu(1)+nu(3) water vapor transition band by 938 nm distributed feed-back diode laser at different temperatures using the tunable diode laser spectroscopy technique. These relative water vapor concentrations are converted into the absolute water vapor concentrations and we confirmed that the experimental results at different temperatures are consistently independent of the attenuation. Our measurement system gives the consistent water vapor concentrations without regard to either high or low scattering caused by the non-water dust particles inside the observed humidity chamber.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2008.10.022DOI Listing

Publication Analysis

Top Keywords

water vapor
28
diode laser
12
vapor concentrations
12
tunable diode
8
laser spectroscopy
8
vapor concentration
8
caused non-water
8
non-water dust
8
dust particles
8
particles inside
8

Similar Publications

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( spp.) Essential Oil.

Foods

January 2025

Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

The cavitation water jet cleaning and coating removal technique represents an innovative sustainable method for cleaning and removing coatings, with the nozzle serving as a crucial component of this technology. Developing an artificially submerged nozzle with a reliable structure and excellent cavitation performance is essential for enhancing cavitation water jets' cleaning and coating removal efficacy in an atmosphere environment (non-submerged state). This study is based on the shear flow cavitation mechanism of an angular nozzle, the resonance principle of an organ pipe, and the jet pump principle.

View Article and Find Full Text PDF

This study focuses on selecting a suitable 3D printer and defining experimental methods to gather the necessary data for determining the optimal filament material for printing components of the VEX GO and VEX IQ robotic kits. The aim is to obtain the required data to identify an appropriate filament material and set 3D printing parameters to achieve the desired mechanical properties of the parts while maintaining cost-effectiveness. Another key objective is achieving optimal operational functionality, ensuring the required part performance with minimal printing costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!