This paper attempts to provide insight into the biological ammonium oxidation process applied to high-strength ammonium wastewater treatment. The ammonium oxidation process has been investigated at various ammonium and biomass concentrations. Using the oxygen uptake rate (OUR) method, a proportion of both active ammonium oxidizers (AAO) and nitrite oxidizers to the total suspended solids were separately estimated, and then tested to normalize the ammonium oxidation rate at various ammonium strengths and AAO concentrations. High-ammonium strength showed no significant inhibition to ammonium oxidation due to high-AAO concentration. It was demonstrated that the key factor deciding the specific ammonium oxidation rate was the ratio of ammonium concentration to the active nitrifiers (AN) concentration, but not the sole-variable such as initial ammonium concentration and AN concentration. Contois model was screened to suitably fit the ammonium oxidation kinetics under the high-ammonium loading condition, resulting in a half-saturation constant of 0.028 mg N mg(-1) AAO and a maximum specific ammonium oxidation rate of 3.56 g N g(-1)AAO d(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2008.11.003 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany. Electronic address:
Ladderanes are highly strained hydrocarbons consisting of two or more linearly concatenated cyclobutane rings. Strikingly, ladderane moieties are part of unique fatty acids and fatty alcohols that are exclusively found in the membrane lipids of anaerobic ammonium-oxidizing (anammox) bacteria. These bacteria express a distinctive gene cluster (cluster I) that has been suggested to be responsible for ladderane fatty acid (FA) biosynthesis in addition to a cluster likely involved in canonical FA biosynthesis (cluster III).
View Article and Find Full Text PDFChemosphere
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.
View Article and Find Full Text PDFWater Res
January 2025
Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan.
In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!