Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface plasmon resonance (SPR) techniques have become, over the last ten years, powerful tools to study biomolecular surface interaction kinetics in real-time without any use of labels. The highest resolution is currently obtained using spectroscopic SPR systems through the measurement of the complete surface plasmon resonance curve in angular or spectral configuration. But, these systems are limited to a few independent channels (<10). In order to expand their capability to an array format, SPR sensors have also been developed in an imaging mode, allowing parallel monitoring of hundreds of sensing spots onto a camera. However, such sensors rely on the intensity variation measurement at a single position of the resonance spectrum, hence resulting in smaller resolution. We present in this work a SPR spectro-imaging system which aims at keeping the advantage of a mono-channel SPR sensor based on the full resonance curve measurement while introducing an additional spatial dimension (linear multi-spot array). The system is based on the illumination of a biochip through a vertical slit (y-dimension) by a white light source. The reflected light spectrum obtained through a diffracting grating is then imaged on the x-dimension of the camera. The complete spectral resonance curve of a full column of sensing spots can be monitored in parallel and in real-time. We demonstrate that data processing is key to reduce the noise and to improve the resolution. We report on the detection of signals with resolution comparable to the one obtained with a classical SPR mono-channel spectroscopic sensor (3.5 x 10(-7) Refractive Index Unit), gaining an order of magnitude compared to SPR imaging sensors. Eventually, we show that short base DNA-DNA hybridizations with concentrations as low as 100 pM can be detected and discriminated in a few tens of minutes following injection by the SPR spectro-imaging system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2008.10.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!