A series of 3-unsubstituted/substituted-4,5-diphenyl-2-oxo-3H-1,3-oxazole derivatives were prepared as selective cyclooxygenase-2 (COX-2) inhibitors. Among the synthesized compounds, 4-(4-phenyl-3-methyl-2-oxo-3H-1,3-oxazol-5-yl)benzensulfonamide (compound 6) showed selective COX-2 inhibition with a selectivity index of >50 (IC(50)COX-1=>100 microm, IC(50)COX-2=2 microm) in purified enzyme (PE) assay. Compound 6 also exhibited selective COX-2 inhibition in human whole blood assay. Molecular docking studies showed that 6 can be docked into the COX-2 binding site thus providing the molecular basis for its activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2008.10.039DOI Listing

Publication Analysis

Top Keywords

selective cox-2
12
cox-2 inhibitors
8
cox-2 inhibition
8
cox-2
5
synthesis biological
4
biological evaluation
4
evaluation 45-diphenyloxazolone
4
45-diphenyloxazolone derivatives
4
derivatives route
4
selective
4

Similar Publications

Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.

Sci Rep

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects.

View Article and Find Full Text PDF

The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay.

View Article and Find Full Text PDF

Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.

View Article and Find Full Text PDF

Arachidonic acid synergizes with aspirin preventing myocardial ischemia-reperfusion injury and mitigates bleeding risk.

Cardiovasc Res

January 2025

State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Aims: The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin.

View Article and Find Full Text PDF

Network pharmacological mechanism and molecular experimental validation of artemisinin in the treatment of lung adenocarcinoma.

Toxicol Appl Pharmacol

January 2025

Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China. Electronic address:

Background: Lung cancer is a medical ailment with high mortality and prevalence rates. Artemisinin (ART) and its derivatives exhibit anti-cancer properties against various malignancies, including lung cancer. However, further research is required to determine the precise anti-cancer mechanisms of ART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!