For an effective tissue controlled electropermeabilization as requested for electrochemotherapy and electrogenotherapy, it is very important to have informations about the electric field distribution provided by a defined set of electrodes. Computer simulations using the finite element models approach predicted the associated field distributions and currents. Phantoms made of gels with well-defined electrical conductance were used to measure the current responses of a new electrode geometry (wires), A good agreement between the measured and predicted currents was observed supporting the validity of the prediction for the field distribution. Field distribution was observed to be very localized and highly homogeneous with the new concept of contact wire electrodes. They allowed to focus the field effect along the surface of the tissue to induce a controlled release of drugs or plasmids. Non invasive (contact) electrodes can be moved rapidly on the body and avoid puncturing the skin and the tissue. They can be used for large surface effects, to treat the skin and subcutaneous tumors. The use of contact electrodes after drug or DNA intradermal injection were validated by clinical treatment of large surface skin tumors and by in vivo imaging of permeabilization or of gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2008.11.003DOI Listing

Publication Analysis

Top Keywords

contact electrodes
12
field distribution
12
invasive contact
8
large surface
8
electrodes
5
field
5
electrodes vivo
4
vivo localized
4
localized cutaneous
4
cutaneous electropulsation
4

Similar Publications

Dual-compartment-gate organic transistors for monitoring biogenic amines from food.

Biosens Bioelectron

December 2024

Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.

According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.

View Article and Find Full Text PDF

The P2-NaMnO cathode material has long been constrained by phase transitions induced by the Jahn-Teller (J-T) effect during charge-discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor MnO synthesis, followed by calcination to obtain NaTiMnO materials. We investigated the effects of Ti doping on the structure, morphology, Mn concentration, and Na diffusion coefficients of NaTiMnO.

View Article and Find Full Text PDF

A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus.

Biosensors (Basel)

November 2024

Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA.

Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV.

View Article and Find Full Text PDF

Enhancing Quasi-Solid-State Lithium-Metal Battery Performance: Multi-Interlayer, Melt-Infused Lithium and Lithiophilic Coating Strategies for Interfacial Stability in Li||VS-DSGNS-LATP|PEO-PVDF||NMC622-AlO Systems.

ACS Appl Mater Interfaces

December 2024

Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.

The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs) are regarded as promising next-generation energy storage technology owing to their inherent safety and high theoretical energy density. However, achieving and maintaining solid-solid electronic and ionic contact in ASSBs generally requires high-pressure fabrication and high-pressure operation, posing substantial challenges for large-scale production and application. In recent years, significant efforts are made to address these pressure-related challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!