Controlled synthesis and characterization of the enhanced local field of octahedral Au nanocrystals.

Chem Commun (Camb)

Department of Chemistry, Research Institute of Natural Science, and Environmental Biotechnology National Core Research Center, Gyeongsang National University, 660-701, Jinju, Korea.

Published: December 2008

Octahedral Au nanocrystals with localized surface plasmon-assisted enhancing optical properties can be prepared in aqueous solution via the forced reduction of Au ions by ascorbic acid through the addition of NaOH.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b815925dDOI Listing

Publication Analysis

Top Keywords

octahedral nanocrystals
8
controlled synthesis
4
synthesis characterization
4
characterization enhanced
4
enhanced local
4
local field
4
field octahedral
4
nanocrystals octahedral
4
nanocrystals localized
4
localized surface
4

Similar Publications

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Donor-Acceptor Functionalized Water-Soluble Metal-Organic Cages Showing an Excellent Synergistic Photothermal-Chemotherapy Effect.

Nano Lett

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

Water-soluble metal-organic cages (WSMOCs) show high potential as antitumor agents, while the targeted functionalization of WSMOCs toward enhanced antitumor performances is a challenging task. Herein, WSMOCs were functionalized with donor-acceptor (D-A) systems for synergistic photothermal-chemotherapy. Octahedral [ML] cages based on a 2,4,6-tri(2-pyridine-4-yl)-1,3,5-triazine (TPT) acceptor and M(bpy) (M = Pd for , Pt for ) nodes were functionalized with tetrathiafulvalene (TTF) to form and .

View Article and Find Full Text PDF

Continuous-Flow and Scalable Synthesis of Pd@Pt Core-Shell Nanocrystals with Enhanced Activity toward Oxygen Reduction.

J Phys Chem C Nanomater Interfaces

December 2024

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.

We report a scalable method based on continuous-flow reactors for conformally coating the surfaces of facet-controlled Pd nanocrystals with uniform, ultrathin shells made of Pt. The key to the success of such an approach is the identification of a proper polyol to generate the Pt atoms at a relatively slow rate to ensure adequate surface diffusion and thus the formation of uniform shells in a layer-by-layer fashion. We first demonstrate the concept using the production of Pd@Pt (n = 2-5) core-shell icosahedral nanocrystals and then have the strategy successfully extended to the syntheses of Pd@Pt cubic and octahedral nanocrystals.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how the Cu111 surface selectively forms C-C bonds during CO reduction using tiny Cu nanoparticles (less than 2 nm).
  • It identifies the ideal size for nanoparticles and explores how embedding them in specific supporting surfaces, like 2SO-doped graphene nanoribbons, can boost their stability and efficiency.
  • The research analyzes different Cu geometries and their impact on reaction intermediates, suggesting a relationship between binding energies that could guide the design of more effective catalysts for CO conversion.
View Article and Find Full Text PDF

Unveiling the Mechanism of Exsolution of Silver Nanoparticles for Decorating Lanthanum Strontium Ferrite.

Inorg Chem

December 2024

Facultad de Farmacia, Departamento de Química y Bioquímica, Urbanización Montepríncipe, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, E-28668 Madrid, Spain.

Lanthanum strontium ferrite (LaSrAgFeO = 0; LSFO) and its silver-doped derivative (LaSrAgFeO = 0.05; LASFO) are synthesized using mild conditions by a sol-gel method. Both oxides present a perovskite-like structure with orthorhombic symmetry due to octahedral tilting; thus, the incorporation of silver in the A-site does not significantly modify the perovskite structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!