Selective removal of molybdenum traces from growth media of N2-fixing bacteria.

Anal Biochem

Lehrstuhl für A'norganische Chemie I, Universität Bielefeld, Federal Republic of Germany.

Published: March 1991

A new method for the selective removal of traces of molybdenum from growth media of N2-fixing bacteria (Rhodobacter capsulatus and Klebsiella pneumoniae) was developed. This method is based on the filtration of nutrient solutions through a layer of activated carbon (pulverized charcoal). The adsorption of Mo (molybdate) to activated carbon was optimal if a charcoal suspension (50 g/liter) was degassed by boiling before use and if the pH of the solutions, which had to be purified, was adjusted to values between 1.5 and 4. In this pH region no or only negligible amounts of other metal ions were adsorbed. The activated carbon method was compared with other Mo-eliminating procedures, including 8-hydroxyquinoline/dichloromethane extraction, Chelex 100 chromatography, and treatment with Mo-starved Azotobacter vinelandii cells. The activated carbon filtration appeared to be the most effective, specific, and rapid method. Whereas the untreated Rhodobacter growth medium was contaminated with 1.2 ppb Mo, as analyzed by inductively coupled plasma mass spectrometry (ICP-MS), the activated carbon-treated medium was below the ICP-MS detection limit (less than 0.05 ppb). A similarly effective removal of Mo impurities was obtained by the Azotobacter treatment. Even at low optical densities (2-5 at 436 nm) Mo traces were removed very rapidly within 10-15 min. However, because the Mo uptake/Mo adsorption capacity of A. vinelandii depended on freshly cultivated cells and on the growth phase at which the cells were harvested, this microbiological method was generally more time-consuming and less reproducible than the activated carbon method.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-2697(91)90024-nDOI Listing

Publication Analysis

Top Keywords

activated carbon
20
selective removal
8
growth media
8
media n2-fixing
8
n2-fixing bacteria
8
activated
6
method
5
carbon
5
removal molybdenum
4
molybdenum traces
4

Similar Publications

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Cdc42 is crucial for the early regulation of hepatic stellate cell activation.

Am J Physiol Cell Physiol

January 2025

Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.

The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation.

View Article and Find Full Text PDF

Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO from Flue Gas.

Inorg Chem

January 2025

Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.

The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!