This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100 × R(Hill) (1/4 × R(Hill)) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D < 200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600456 | PMC |
http://dx.doi.org/10.1016/j.icarus.2006.06.001 | DOI Listing |
Nature
December 2024
Max-Planck-Institut für Astronomie, Heidelberg, Germany.
Asteroid discoveries are essential for planetary-defense efforts aiming to prevent impacts with Earth, including the more frequent megaton explosions from decameter impactors. While large asteroids (≥100 km) have remained in the main belt since their formation, small asteroids are commonly transported to the near-Earth object (NEO) population. However, due to the lack of direct observational constraints, their size-frequency distribution -which informs our understanding of the NEOs and the delivery of meteorite samples to Earth-varies significantly among models.
View Article and Find Full Text PDFNature
October 2024
Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel.
Nature
October 2024
Department of Space Studies, Southwest Research Institute, Boulder, CO, USA.
Understanding the origin of bright shooting stars and their meteorite samples is among the most ancient of astronomy-related questions, which at larger scales has human consequences. As of today, only approximately 6% of meteorite falls have been firmly linked to their sources (Moon, Mars or asteroid (4) Vesta). Here we show that approximately 70% of meteorites originate from three recent break-ups of D > 30 km asteroids that occurred 5.
View Article and Find Full Text PDFSci Rep
July 2024
Southwest Research Institute, San Antonio, TX, USA.
The asteroid (142) Polana is classified as a B-type asteroid located in the inner Main Belt. This asteroid is the parent of the New Polana family, which has been proposed to be the likely source of primitive near-Earth asteroids such as the B-type asteroid (101955) Bennu. To investigate the compositional correlation between Polana and Bennu at the 3 µm band and their aqueous alteration histories, we analyzed the spectra of Polana in the ~ 2.
View Article and Find Full Text PDFAsteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect) to be a notable factor in their evolution. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum is typical of bodies in this part of the main belt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!