We present an integrated optical displacement sensing method for microscale sensors which is based on an asymmetric Fabry-Perot etalon structure with an embedded phase-sensitive diffraction grating. Analytical modeling of the structure shows that the etalon significantly improves the detection sensitivity as compared to a regular optical interferometer and the embedded diffraction grating enables integration of optoelectronics in a small volume. The efficacy of the method is experimentally validated on a surface micromachined diffraction-based opto-acoustic sensor fabricated on a quartz wafer. A 15 nm silver layer is used to form the bottom mirror of the etalon structure with a sensor membrane and embedded diffraction grating made of aluminum. Comparison of the results with and without the etalon shows an 8 dB increase in detection sensitivity with the etalon structure, which should be further enhanced with the use of low-loss dielectric mirrors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600446 | PMC |
http://dx.doi.org/10.1063/1.1804605 | DOI Listing |
Analyst
November 2024
Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
The virtually imaged phased array (VIPA) spectrometer uses the orthogonal dispersion method and has the advantages of compact structure, high spectral resolution, and wide wavelength coverage. It has been widely used in different fields. However, due to the non-linear dispersion of the VIPA etalon and the cross-dispersion structure of the VIPA spectrometer, simple and high-accuracy wavelength calibration remains a challenge.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Jerusalem College of Technology, Israel. Electronic address:
Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry-Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup.
View Article and Find Full Text PDFSensors (Basel)
February 2024
School of Electrical and Electronics Engineering, Hubei University of Technology, Wuhan 430068, China.
In the field of inter-satellite laser communication, achieving high-quality communication and compensating for the Doppler frequency shift caused by relative motion necessitate lasers with narrow linewidths, low phase noise, and the ability to achieve mode-hop-free tuning within a specific range. To this end, this paper investigates a novel external cavity diode laser (ECDL) with a frequency-selective F-P etalon structure, leveraging the external cavity F-P etalon structure in conjunction with an auxiliary filter to achieve single longitudinal mode selection. The laser undergoes linewidth testing using a delayed self-heterodyne beating method, followed by the testing of its phase noise and frequency noise characteristics using a noise analyzer, yielding beat spectra and noise power spectral density profiles.
View Article and Find Full Text PDFSensing and filtering applications often require Fabry-Perot (FP) etalons with an Interferometer Transfer Function (ITF) having high visibility, narrow Full Width at Half Maximum (FWHM), and high sensitivity. For the ITF to have these characteristics, the illumination beam must be matched to the modes of the FP cavity. This is challenging when a small illumination element size is needed, as typical focused beams are not matched to the FP cavity modes.
View Article and Find Full Text PDFAnalyst
September 2023
Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
Coincidental realization of broadband spectral coverage and high resolution in one spectrometer system has always been a challenge. Here, we report the development of a high-resolution visible CCD spectrometer based on the virtually imaged phase array (VIPA) technique. By using a thin glass plate and a reflective grating, a two-dimensional cross-dispersion was realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!