A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of carbon source on the biological reduction of ionic mercury. | LitMetric

The effect of carbon source on the biological reduction of ionic mercury.

J Hazard Mater

REQUIMTE/CQFB, Chemistry Dept, FCT, Universidade Nova de Lisboa, Caparica, Portugal.

Published: June 2009

Mercury (Hg) is the most highly toxic heavy metal, and must be removed from waterways to very low levels. Biologically mediated mercury removal is an emerging technology that has the potential to be robust, efficient and cost-effective. In this study, the impact of carbon source on the behaviour and microbial community composition of mixed microbial cultures was evaluated, and their performance was compared with a pure culture of Pseudomonas putida spi3. Glucose and acetate, two carbon sources that are commonly present in wastewaters, were chosen for this study. Distinct microbial populations were enriched with each carbon source. Glucose led to a more suitable microbial culture for Hg(2+) bioreduction that was able to reduce Hg(2+) at faster rates when compared to acetate. Furthermore, acetate consistently led to poorer process performance, irrespective of the microbial culture, possibly due to the formation of mercuric acetate complexes. It is proposed that glucose can be a more beneficial carbon source than acetate for the successful operation of Hg bioremediation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.10.094DOI Listing

Publication Analysis

Top Keywords

carbon source
16
microbial culture
8
carbon
5
microbial
5
acetate
5
source biological
4
biological reduction
4
reduction ionic
4
ionic mercury
4
mercury mercury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!