Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arth.2008.01.002DOI Listing

Publication Analysis

Top Keywords

interface type
16
type failure
16
failure
12
closed reduction
8
failure omnifit
8
omnifit tripolar
8
failure failure
8
cases failure
8
bipolar-femoral head
8
head interface
8

Similar Publications

Oral glucose-responsive nanoparticles loaded with artemisinin induce pancreatic β-cell regeneration for the treatment of type 2 diabetes.

J Colloid Interface Sci

January 2025

School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China. Electronic address:

Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D.

View Article and Find Full Text PDF

Synergistic spatial separation effect of internal electric field in ALD-generated BiFeO/CuO@Co Z-type heterojunction for enhanced photocatalytic water oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China; Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Altering the electron distribution within a catalyst to manipulate internal charge migration pathways is an effective strategy for achieving high efficiency in carrier separation and migration, which is essential for the advancement of photocatalytic water oxidation technologies. We have employed atomic layer deposition (ALD) to construct a BiFeO/CuO (BFO/CuO) heterojunction with a specific CuO thickness, resulting in a Z-type junction (BFO/CuO50) characterized by a robust internal electric field. This junction facilitates the spatial separation of charge carriers, thereby enhancing their migration efficiency.

View Article and Find Full Text PDF

The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view.

View Article and Find Full Text PDF

MXene Hollow Microsphere-Boosted Nanocomposite Electrodes for Thermocells with Enhanced Thermal Energy Harvesting Capability.

ACS Nano

January 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermal energy, constantly being produced in natural and industrial processes, constitutes a significant portion of energy lost through various inefficiencies. Employing the thermogalvanic effect, thermocells (TECs) can directly convert thermal energy into electricity, representing a promising energy-conversion technology for efficient, low-grade heat harvesting. However, the use of high-cost platinum electrodes in TECs has severely limited their widespread adoption, highlighting the need for more cost-effective alternatives that maintain comparable thermoelectrochemical performance.

View Article and Find Full Text PDF

Quantitative analysis of particle behavior constituting multiple coherent structures in liquid bridges.

J Colloid Interface Sci

January 2025

Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Chiba, Japan. Electronic address:

Hypothesis: Coherent structures by low-Stokes-number particles are induced within a closed flow, in which ordered flow regions known as Kolmogorov-Arnold-Moser (KAM) tori emerge. A variety of structures with different spatial characteristics has been predicted by varying the Stokes number, whereas the coexistence of structures in flow suspending various types of particles has not been hitherto demonstrated.

Experiments: Half-zone liquid bridges of O () are prepared as a closed system to induce thermocapillary-driven time-dependent flow under normal gravity conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!