The hydrodynamic behavior of G alpha s, the alpha subunit of the stimulatory guanine nucleotide-binding regulatory protein (G protein), in octyl glucoside extracts of rat liver membranes was investigated. As was previously shown for G proteins similarly extracted from brain synaptoneurosomes, G alpha s behaved as polydisperse structures with S values higher than that of heterotrimeric G proteins. At concentrations of guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) greater than 100 microM, incubation with membranes led to smaller structures having S values in the range of 4-5 S. Incubation of liver membranes with glucagon also caused a marked increase in structures having these S values; glucagon action required the presence of low concentrations of GTP[gamma S] (maximal, 10 microM), was rapid (within 10 sec), and was not observed with vasopressin, angiotensin II, or glucagon-(19-29). When G alpha s in its membrane-bound form was [32P]ADP-ribosylated by cholera toxin and the treated membranes were extracted with octyl glucoside, greater than 35% of the labeled G alpha s was found in material that sedimented through sucrose gradients and contained relatively low levels of immunoreactive G alpha s. Glucagon selectively converted the apparently large molecular weight structures to the 4-5 S structures in the presence of GTP[gamma S], even at 1 mM (the maximal effect of the nucleotide alone), when incubated with the toxin-treated membranes. These findings suggest that the glucagon receptor selectively interacts with polymer-like structures of G alpha s and that activation by GTP[gamma S] results in disaggregation. The role of the beta and gamma subunits of G proteins in the hormone-induced process is not clear since the polymer-like structures extracted with octyl glucoside are devoid of beta and gamma subunits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC52251 | PMC |
http://dx.doi.org/10.1073/pnas.88.16.7150 | DOI Listing |
Sci Total Environ
February 2025
Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:
The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.
View Article and Find Full Text PDFMater Horiz
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
Despite recent advancements in organic phosphors, the synthesis of monodisperse afterglow microparticles (MPs) suitable for creating photonic crystals remains challenging. The SiO matrix is an attractive host material for activating the long-lived emissions of doped molecules due to several factors, including its cross-linked polymer-like structure, abundance of -OH groups, robustness, and presence of numerous emitter defects. However, the Stöber method struggles to produce monodisperse molecule-doped SiO MPs due to the complexity of the system.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
Chromatin modeling enables the characterization of chromatin architecture at a resolution so far unachievable with experimental techniques. Polymer models fill our knowledge gap on a wide range of structures, from chromatin loops to nuclear compartments. Many physical properties already known for polymers can thus explain the dynamics of chromatin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid ,Spain.
Understanding the thermal conductivity in metal-organic framework (MOF)-polymer composites is crucial for optimizing their performance in applications involving heat transfer. In this work, several UiO66-polymer composites (where the polymer is either PEG, PVDF, PS, PIM-1, PP, or PMMA) are examined using molecular simulations. Our contribution highlights the interface's impact on thermal conductivity, observing an overall increasing trend attributable to the synergistic effect of MOF enhancing polymer thermal conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!