Background: The change of anaerobic exercise abilities during and after a high-altitude expedition or hypoxic exposure is not well studied. To evaluate the effects of an extreme-altitude expedition on anaerobic performance, the 10-second supramaximal test and endocrine hormones were evaluated before and after an expedition to Peak Lenin.

Methods: Four subjects (3 male and 1 female, age (30.5 +/- 16.5) years) were recruited into the study. Three sets of tests were performed, including a basic test at sea level and 20 days before first arrival at the base camp (3600 m), a middle test done at day after returning from the summit to the base camp and the post test at the 10th day after return to the sea level. Both the supramaximal test, performed by a cycle ergometer, and body composition, performed by bioelectrical impedance analysis, were completed before the basic test and post test. The endocrine hormones including cortisol, growth hormone, testosterone, noradrenaline, adrenaline, dopamine, glucagon and beta-endorphin were measured at all tests.

Results: Comparing the conditions before and after the expedition, the body measurement parameters were decreased after the expedition, i.e., body weight (-4.22%, P < 0.05), fat-free mass (-2.09%, P < 0.01) and body fat (-8.95%, P = 0.172). The peak power relative/body weight ratio (PP/BW) was similar ((9.70 +/- 1.97) vs (9.11 +/- 1.80) W/kg, P = 0.093), while mean power/body weight ratio (MP/BW) was reduced significantly after the expedition ((9.14 +/- 1.77) vs (8.33 +/- 1.74) W/kg, P < 0.05). Peak power/fat-free mass (PP/FFM), mean power/fat-free mass (MP/FFM) and fatigue index (FI) were significantly lower after the expedition (PP/FFM: (11.95 +/- 1.71) vs (10.99 +/- 1.59) W/kg, P < 0.05; MP/FFM: (11.26 +/- 1.50) vs (10.04 +/- 1.55) W/kg, P < 0.005; FI (85.55 +/- 4.17)% vs (77.25 +/- 4.40)%, P < 0.05). Hormone assays showed a significant increase of noradrenaline (basic vs middle, P < 0.05) as well as decrease of adrenaline (P < 0.05). Meanwhile, a trend towards an increase in dopamine (basic vs middle) and a decrease of beta-endorphin (basic vs post) were also noted.

Conclusions: These results suggested that an expedition to an extreme altitude may have negative effects on anaerobic performance. It showed that a significant increase of noradrenaline (basic vs middle) as well as decrease of adrenaline after the expedition to Peak Lenin had occurred. The real physiological significance needs to be further investigated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

anaerobic performance
12
expedition peak
12
basic middle
12
+/-
11
expedition
10
peak lenin
8
supramaximal test
8
test endocrine
8
endocrine hormones
8
basic test
8

Similar Publications

Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw.

Bioresour Technol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:

This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.

View Article and Find Full Text PDF

The study aimed to verify the physiological and metabolic parameters associated with the time to task failure (TTF) during cycling exercise performed within the severe-intensity domain. Forty-five healthy and physically active males participated in two independent experiments. In experiment 1, after a graded exercise test, participants underwent constant work rate cycling efforts (CWR) at 115% of peak power output to assess neuromuscular function (Potentiated twitch) pre- and post-exercise.

View Article and Find Full Text PDF

Variational graph autoencoder for reconstructed transcriptomic data associated with NLRP3 mediated pyroptosis in periodontitis.

Sci Rep

January 2025

Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.

The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!