Type 2 transglutaminase (TG2) is an acyltransferase, which also undergoes a GTP-binding/GTPase cycle, with guanine nucleotide and calcium binding reciprocally regulating its transamidation (TG) activity. TG2 is expressed ubiquitously throughout the human body and is the predominant neuronal transglutaminase. Given a postulated role for TG2 in a number of physiological and pathological processes including neurodegenerative diseases, it is of critical importance to understand how TG2 and its enzymatic activities are regulated in the cells. The various aspects of TG2 regulation are addressed by using rat and human TG2 proteins, however, despite their homologous structure, regulation of their enzymatic activities may differ, especially in the cellular context. Here, we evaluate the role of Arg580 in human TG2 and Arg579 in rat TG2 in modulating GTP binding and TG activities in vitro and in situ. We confirm the importance of Arg580 and Arg579 in TG2 for GTP binding as their mutation to Ala completely abolished GTP binding activity in both human (R580A) and rat TG2 (R579A). Next, we showed that in transfected human embryonic kidney (HEK) 293 cells, basal in situ TG activity of human R580A TG2 and rat R579A TG2 was significantly greater than their wild-type (WT) counterparts. However, TG activity of the mutants and WT TG2 became equivalent when the intracellular calcium concentration was maximally increased with maitotoxin. Also, in vitro TG activity assay revealed an intriguing difference between rat and human TG2; at a calcium concentration when their activities were maximum, the protein level of human R580A TG2 was lower than its WT counterpart, whereas rat R579A and WT TG2 protein levels were similar. Taken together, our study underscores an essential role of Arg580 in human TG2 and Arg579 in rat TG2 for their GTP binding ability and also describes for the first time that these amino acid residues differentially influence the TG activity of human or rat TG2 by calcium in vitro and in situ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592594 | PMC |
PLoS One
December 2024
Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.
View Article and Find Full Text PDFJ Extracell Vesicles
December 2024
Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood.
View Article and Find Full Text PDFJ Assist Reprod Genet
December 2024
Department of Reproductive Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
Purpose: This study aimed to investigate the genetic etiology in an infertile patient presenting with consistently elevated progesterone levels.
Methods: Genomic DNA was extracted from the patient's blood sample and subjected to whole-genome sequencing (NGS) using the Illumina NovaSeq platform. Bioinformatic analyses were conducted to identify single nucleotide variants (SNVs) and insertion-deletion mutations (Indels) potentially associated with the patient's clinical phenotype.
Orphanet J Rare Dis
December 2024
Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: GTPBP3 catalyzes τm(s) U biosynthesis at the 34th wobble position of mitochondrial tRNAs, the hypomodification of τmU leads to mitochondrial disease. While twenty-three variants of GTPBP3 have been reported worldwide, the genetic landscape in China remains uncertain.
Methods: By using whole-exome sequencing, the candidate individuals carrying GTPBP3 variants were screened and identified.
Exp Eye Res
December 2024
Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China. Electronic address:
We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (HO)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!