Background: Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria.
Principal Findings: A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on egg laying or health of the hens and resulted in high antibody levels throughout the life of the hens. Progeny of immunized hens excreted significantly less oocysts of various species of Eimeria in their faeces than chicks from unvaccinated hens. Furthermore, the offspring of vaccinated hens developed stronger natural immunity to Eimeria, so that they were resistant to challenge infection even at 8 weeks of age, well after all maternal antibodies had left their circulation. Field trials were conducted in South Africa, Brazil and Thailand, involving at least 1 million progeny of vaccinated hens and at least 1 million positive control birds (raised on feed containing anticoccidial drugs or immunized with a live vaccine) in each country. Additionally, trials were carried out in Israel involving 60 million progeny of vaccinated hens and 112 million positive control birds. There were no significant differences in growth rate, feed conversion ratios or mortality in the offspring of vaccinated hens compared with the positive control chickens in any of these countries regardless of different management practices, different breeds of chickens or climate.
Conclusions: These results demonstrate that a vaccine composed of antigens purified from the gametocytes of Eimeria can be used safely and effectively to prevent the deleterious effects of coccidiosis. It is the first subunit vaccine against any protozoan parasite to be successfully applied on a commercial scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596963 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003948 | PLOS |
Animals (Basel)
January 2025
Scotland's Rural College, Roslin Institute Building, Easter Bush Campus, Midlothian EH25 9RG, UK.
This study aimed to identify if sensor technology could be used to detect sickness-type signs (caused by a live vaccine) in laying hens compared to physiological and clinical sign scoring and behaviour observation. The experiment comprised 5 replicate batches (4 hens and 12 days per batch) using previously non-vaccinated hens ( = 20). Hens were moved on day 1 to a large experimental room with various designated zones (e.
View Article and Find Full Text PDFFront Public Health
January 2025
Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
Introduction: In relatively wealthy countries, substantial between-country variability in COVID-19 vaccination coverage occurred. We aimed to identify influential national-level determinants of COVID-19 vaccine uptake at different COVID-19 pandemic stages in such countries.
Methods: We considered over 50 macro-level demographic, healthcare resource, disease burden, political, socio-economic, labor, cultural, life-style indicators as explanatory factors and coverage with at least one dose by June 2021, completed initial vaccination protocols by December 2021, and booster doses by June 2022 as outcomes.
Poult Sci
January 2025
Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608. Electronic address:
Campylobacter infections are a prevalent cause of diarrheal disease in humans and are the most significant zoonotic pathogens worldwide. Human campylobacteriosis is generally via ingestion of contaminated poultry products. However, based on recent studies chicken egg yolk antibody (IgY) powder has great potential to reduce the cecum load of Campylobacter jejuni (C.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Prophyl Kft., 7700 Mohács, Hungary.
Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.
Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.
Avian Pathol
January 2025
Royal GD, Deventer, the Netherlands.
Protection against (EPS) challenge seems to be genotype-serotype-specific.Genotype B (O78:H4) gave (almost) full protection against genotypes B, F and H (all O78:H4).Genotype D (O11:H12) incited partial protection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!