miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42.

Nat Struct Mol Biol

National Creative Research Center and School of Biological Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, South Korea.

Published: January 2009

AI Article Synopsis

Article Abstract

The tumor suppressor p53 is central to many cellular stress responses. Although numerous protein factors that control p53 have been identified, the role of microRNAs (miRNAs) in regulating p53 remains unexplored. In a screen for miRNAs that modulate p53 activity, we find that miR-29 family members (miR-29a, miR-29b and miR-29c) upregulate p53 levels and induce apoptosis in a p53-dependent manner. We further find that miR-29 family members directly suppress p85 alpha (the regulatory subunit of PI3 kinase) and CDC42 (a Rho family GTPase), both of which negatively regulate p53. Our findings provide new insights into the role of miRNAs in the p53 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.1533DOI Listing

Publication Analysis

Top Keywords

p53
8
p85 alpha
8
find mir-29
8
mir-29 family
8
family members
8
mir-29 mirnas
4
mirnas activate
4
activate p53
4
p53 targeting
4
targeting p85
4

Similar Publications

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.

View Article and Find Full Text PDF

Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.

View Article and Find Full Text PDF

Supramolecular Combination Chemotherapy: Directly Inducing Immunogenic Cell Death To Inhibit Tumor Metastasis via Host-Guest Interactions.

ACS Appl Mater Interfaces

January 2025

Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.

Tumor metastasis is a difficult clinical problem to solve due to tumor heterogeneity and the emergence of antiapoptotic clones driven by tumor evolution. Clinical combination chemotherapy remains a standard treatment for solid metastasis tumors but with worse treatment efficiency. It is worth exploring a high-efficiency and low-side-effect therapeutic method to solve solid metastases.

View Article and Find Full Text PDF

Objective: Our study presents a novel analysis of the oncogenes and tumor suppressor proteins directly modulated by E6/E7 of high-risk HPV types 16 and 18, in colorectal cancer (CRC).

Methods: HCT 116 (KRAS mutant) & HT-29 (TP53 mutant) cell models of CRC were transduced with E6/E7 of HPV16 and HPV18, individually and in combination. Further, we utilized a liquid chromatography mass spectrometry (LC-MS/MS) approach to analyze and compare the proteomes of both CRC cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!