Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
From receptors in the nose to supramolecular biopolymers, nature shows a remarkable degree of specificity in the recognition of chiral molecules, resulting in the mirror image arrangements of the two forms eliciting quite different biological responses. It is thus critically important that during a chemical synthesis of chiral molecules only one of the two three-dimensional arrangements is created. Although certain classes of chiral molecules (for example secondary alcohols) are now easy to make selectively in the single mirror image form, one class-those containing quaternary stereogenic centres (a carbon atom with four different non-hydrogen substituents)-remains a great challenge. Here we present a general solution to this problem which takes easily obtainable secondary alcohols in their single mirror image form and in a two-step sequence converts them into tertiary alcohols (quaternary stereogenic centres). The overall process involves removing the hydrogen atom (attached to carbon) of the secondary alcohol and effectively replacing it with an alkyl, alkenyl or aryl group. Furthermore, starting from a single mirror image form of the secondary alcohol, either mirror image form of the tertiary alcohol can be made with high levels of stereocontrol. Thus, a broad range of tertiary alcohols can now be easily made by this method with very high levels of selectivity. We expect that this methodology could find widespread application, as the intermediate tertiary boronic esters can potentially be converted into a range of functional groups with retention of configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07592 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!