Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Most pharmacogenomic studies have attempted to identify single nucleotide polymorphism (SNP) markers that are predictive for treatment outcomes. It is, however, unlikely in complex diseases such as epilepsy, affecting heterogeneous populations, that a single SNP will adequately explain treatment outcomes. This study reports an approach to develop a multi-SNP model to classify treatment outcomes for such a disease and compares this with single-SNP models.
Methods: A prospectively collected dataset of outcomes in 115 patients newly treated for epilepsy, with genotyping for 4041 SNPs in 279 candidate genes, was used for the model development. A cross-validation-based methodology identified SNPs most influential in predicting seizure control after 1 year of drug treatment and then incorporated these into a multi-SNP classification model; using the k-Nearest Neighbour (kNN) supervised learning approach. The classifier was cross-validated to determine its effectiveness in predicting treatment outcome in the developmental cohort and then in two independent validation cohorts. In each, the classification by the multi-SNP model was compared with that of models using the individual SNPs alone.
Results: Five SNPs were selected for the multi-SNP model. Cross-validation showed that the multi-SNP model had a predictive accuracy of 83.5% in the developmental cohort and sensitivity and positive predictive values above 80% in both the independent validation cohorts. In all cases, the multi-SNP model classified the treatment outcomes better than those using any individual SNPs alone.
Conclusion: The results show that a classifier using multiple SNPs can predict treatment outcome more reliably than single-SNP models. This multi-SNP classifier should be tested on data from newly diagnosed epilepsy populations to determine its broad clinical validity. Our method to developing a multi-SNP classifier could be applied to pharmacogenomic studies of other complex diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FPC.0b013e32831d1dfa | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!