Background: Plant defense strategy is usually a result of trade-offs between growth and differentiation (i.e. Optimal Defense Theory--ODT, Growth Differentiation Balance hypothesis--GDB, Plant Apparency Theory--PAT). Interaction between the introduced green alga Caulerpa taxifolia and the endemic seagrass Posidonia oceanica in the Mediterranean Sea offers the opportunity to investigate the plausibility of these theories. We have accordingly investigated defense metabolite content and growth year-round, on the basis of an interaction gradient.

Results: When in competition with P. oceanica, C. taxifolia exhibits increased frond length and decreased Caulerpenyne--CYN content (major terpene compound). In contrast, the length of P. oceanica leaves decreases when in competition with C. taxifolia. However, the turnover is faster, resulting in a reduction of leaf longevity and an increase on the number of leaves produced per year. The primary production is therefore enhanced by the presence of C. taxifolia. While the overall concentration of phenolic compounds does not decline, there is an increase in some phenolic compounds (including ferulic acid and a methyl 12-acetoxyricinoleate) and the density of tannin cells.

Conclusion: Interference between these two species determines the reaction of both, confirming that they compete for space and/or resources. C. taxifolia invests in growth rather than in chemical defense, more or less matching the assumptions of the ODT and/or PAT theories. In contrast, P. oceanica apparently invests in defense rather than growth, as predicted by the GDB hypothesis. However, on the basis of closer scrutiny of our results, the possibility that P. oceanica is successful in finding a compromise between more growth and more defense cannot be ruled out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621152PMC
http://dx.doi.org/10.1186/1472-6785-8-20DOI Listing

Publication Analysis

Top Keywords

caulerpa taxifolia
8
seagrass posidonia
8
posidonia oceanica
8
growth differentiation
8
phenolic compounds
8
taxifolia
6
oceanica
6
defense
6
growth
6
competition invasive
4

Similar Publications

Insecticidal effects of Sargassum vulgare and Caulerpa racemosa extracts on Aedes aegypti.

Parasitol Int

January 2025

Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil. Electronic address:

Dengue is a viral disease present in many regions of the world. Aedes aegypti transmits it, and the most effective way to eliminate the mosquito is during the larval stage. Seaweeds possess metabolites with insecticidal properties, making them potential sources of new larvicides and viable alternatives to synthetic products used to control insect vectors of diseases.

View Article and Find Full Text PDF

This study investigates the diversity and distribution of intertidal () species across different protection zones within the "Capo Gallo-Isola delle Femmine" Marine Protected Area (MPA) in the central Mediterranean Sea. Five species ( and ) were observed on the intertidal rocky shores, with varied abundances across the MPA's protection zones. was the only species found in all zones, with a much higher cover percentage in the most protected area (zone A).

View Article and Find Full Text PDF

Human melanoma is linked with aging-related disorders, prompting interest in the development of functional foods derived from natural ingredients to mitigate its incidence. Molecules in green seaweeds such as Caulerpa racemosa can serve this purpose due to their anti-tumor and anti-inflammatory properties. A previous work study compounds profiling has been carried out, and in this research the molecular docking studies targeting receptors associated with melanoma (GRP78, IRE1, BRAF) and aging (mTOR, AMPK, SIRT1) identified four promising compound in an extract of C.

View Article and Find Full Text PDF

Dual function of sea grapes (Caulerpa racemosa) as phytoremediator for palm oil mill effluent and as ornamental fish feed formulation.

Chemosphere

November 2024

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.

Phytoremediation is a promising technology for treating Palm Oil Mill Effluent (POME). Moreover, phytoremediators have the potential for various aplication, including as feedstock. Hence, this study aims to elucidate the ability of sea grapes (Caulerpa racemosa) in remediating POME and evaluate their suitability as ornamental fish feed.

View Article and Find Full Text PDF

Macroalgae play a crucial role in blue carbon ecosystems, yet their elemental compositions in the Red Sea are not well documented. This study examined the concentrations of 22 elements in 161 macroalgae blade samples from 19 species (5 unidentified) across 3 phyla in the Saudi Arabian Red Sea. Macroalgae blades collected from coral reef habitats exhibited higher concentrations of K, As, and Sr compared to those from seagrass meadows, but had lower levels of total nitrogen (TN), Na, Mg, Al, P, S, Cr, Mn, Fe, and Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!