Aim: The aim of this study was to test the hypothesis that recombinant human growth and differentiation factor-5 (rhGDF-5) in combination with a beta-tricalcium phosphate (beta-TCP) scaffold material results in superior bone formation in sinus floor augmentations in miniature pigs compared with a particulated autogenous bone graft combined with the scaffold material.

Material And Methods: Six adult female Goettingen minipigs underwent a maxillary sinus floor augmentation procedure. In a split-mouth design, the sinus floors were augmented with beta-TCP mixed with autogenous cortical bone chips, in a ratio of approximately 1 : 1, on one side. The contralateral test site was augmented using beta-TCP coated with two concentrations of rhGDF-5 (400 microg rhGDF-5/g beta-TCP or 800 microg rhGDF-5/g beta-TCP; three animals in each case). Simultaneously, one dental implant was inserted into each sinus floor augmentation. After 12 weeks, a histological and histomorphometric assessment of non-decalcified histological specimens was made.

Results: There were significantly higher mean values of volume density of newly formed bone using beta-TCP coated with two concentrations of rhGDF-5 (400 microg: 32.9%; 800 microg: 23.9%) than with the corresponding control (autogenous bone/beta-TCP) (14.6%, 12.9%) (P=0.012, P=0.049). The bone-to-implant contact rates (BIC) were significantly enhanced in test sites (400 microg: 84.2%; 800 microg: 69.8%) compared with the corresponding control sites (24.8%, 40.8%) (P=.027, P=.045).

Conclusion: rhGDF-5 delivered on beta-TCP significantly enhanced bone formation compared with beta-TCP combined with autogenous bone in sinus lift procedures in miniature pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2008.01628.xDOI Listing

Publication Analysis

Top Keywords

sinus floor
16
floor augmentation
12
autogenous bone
12
400 microg
12
800 microg
12
recombinant human
8
human growth
8
growth differentiation
8
differentiation factor-5
8
factor-5 rhgdf-5
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!