Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland.

New Phytol

Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA;Centre for Plant and Food Science, University of Western Sydney, Richmond NSW 2753, Australia.

Published: February 2009

Plant productivity in deserts may be more directly responsive to soil water availability than to precipitation. However, measurement of soil moisture alone may not be enough to elucidate plant responses to precipitation pulses, as edaphic factors may influence productivity when soil moisture is adequate. The first objective of the study was to determine the responses of the aboveground annual net primary productivity (ANPP) of three perennial species (from different functional groups) in a Chihuahuan Desert grassland to variation in natural precipitation (annual and seasonal) and a 25% increase in seasonal precipitation (supplemental watering in summer and winter). Secondly, ANPP responses to other key environmental and soil parameters were explored during dry, average, and wet years over a 5-yr period. ANPP predictors for each species were dynamic. High ANPP in Dasylirion leiophyllum was positively associated with higher soil NH(4)-N and frequent larger precipitation events, while that in Bouteloua curtipendula was positively correlated with frequent small summer precipitation events with short inter-pulse periods and supplemental winter water. Opuntia phaeacantha was responsive to small precipitation events with short inter-pulse periods. Although several studies have shown ANPP increases with increases in precipitation and soil moisture in desert systems, this was not observed here as a universal predictor of ANPP, particularly in dry years.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2008.02643.xDOI Listing

Publication Analysis

Top Keywords

soil moisture
12
precipitation events
12
precipitation
9
aboveground annual
8
annual net
8
net primary
8
primary productivity
8
three perennial
8
perennial species
8
chihuahuan desert
8

Similar Publications

Association between hydroclimatic factors and vegetation health: Impact of climate change in the past and future.

Sci Total Environ

January 2025

Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:

This study investigates the potential impact of future climate scenarios designated by different shared socioeconomic pathways (SSPs) on vegetation health. Considering the entire Indian mainland as the study region, which exhibits a diverse range of climate and vegetation regimes, we analysed long-term past (1981-2020) and future (2021-2100) changes in vegetation greenness across seven vegetation types and four seasons. In order to gain insight into the intricate interrelationships between vegetation and hydroclimatic factors (soil moisture, precipitation, solar radiation, and temperature), a Standardized Vegetation Index (SVI) is used as a proxy for vegetation health, and a bivariate copula-based probabilistic model is developed incorporating a Combined Climate Index (CCI) derived through Supervised Principal Component Analysis (SPCA) and the SVI.

View Article and Find Full Text PDF

Ecological filters shape arbuscular mycorrhizal fungal communities in the rhizosphere of secondary vegetation species in a temperate forest.

PLoS One

January 2025

Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.

The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.

View Article and Find Full Text PDF

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

Improving the understanding of rainfall-runoff processes: Temporal dynamic of event runoff response in Loess Plateau, China.

J Environ Manage

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:

Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!