The Zn/Cd-transporting ATPase, HMA2, has N- and C-terminal domains that can bind Zn ions with high affinity. Mutant derivatives were generated to determine the significance of these domains to HMA2 function in planta. Mutant derivatives, with and without a C-terminal GFP tag, were expressed from the HMA2 promoter in transgenic hma2,hma4, Zn-deficient, plants to test for functionality. A deletion mutant lacking the C-terminal 244 amino acids rescued most of the hma2,hma4 Zn-deficiency phenotypes with the exception of embryo or seed development. Root-to-shoot Cd translocation was fully rescued. The GFP-tagged derivative was partially mis-localized in the root pericycle cells in which it was expressed. Deletion derivatives lacking the C-terminal 121 and 21 amino acids rescued all phenotypes and localized normally. N-terminal domain mutants localized normally but failed to complement the hma2,hma4 phenotypes. These observations suggest that the N-terminal domain of HMA2 is essential for function in planta while the C-terminal domain, although not essential for function, may contain a signal important for the subcellular localization of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2008.02637.xDOI Listing

Publication Analysis

Top Keywords

zn/cd-transporting atpase
8
atpase hma2
8
mutant derivatives
8
function planta
8
lacking c-terminal
8
amino acids
8
acids rescued
8
n-terminal domain
8
essential function
8
hma2
5

Similar Publications

Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses. This study applied Ca in various forms (Ca acetate and CaCl ) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice. The results showed that supplementation of Cd-contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions.

View Article and Find Full Text PDF

The Zn/Cd-transporting ATPase, HMA2, has N- and C-terminal domains that can bind Zn ions with high affinity. Mutant derivatives were generated to determine the significance of these domains to HMA2 function in planta. Mutant derivatives, with and without a C-terminal GFP tag, were expressed from the HMA2 promoter in transgenic hma2,hma4, Zn-deficient, plants to test for functionality.

View Article and Find Full Text PDF

The Zn/Cd-transporting ATPases, HMA2 and HMA4, essential for root-to-shoot Zn translocation, are also able to transport Cd. Phytochelatins (PCs) are a major mechanism of Cd detoxification through the sequestration of PC-Cd complexes in vacuoles. The roles of HMA2 and HMA4 in root-to-shoot Cd translocation and Cd tolerance were investigated in the PC-deficient, cad1-3 mutant and CAD1 backgrounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!