1. The aim of the present study was to test the hypothesis that increasing GABAergic neurotransmission is involved in the prevention or treatment of brain oedema. The study was conducted in the well-established rat triethyltin (TET) model of brain oedema and examined the effects of etifoxine, a compound that increases GABAergic neurotransmission through multiple mechanisms, including neurosteroid synthesis. 2. Daily oral administration of 3 mg/kg per day TET for 5 consecutive days strongly perturbed rat behaviour and induced reproducible cerebral oedema. Coadministration of etifoxine (2 x 25 or 2 x 50 mg/kg per day, p.o.) over the 5 days of TET treatment blocked the development of brain oedema and the increase in brain sodium content induced by TET, as well as reducing the increase in brain chloride content. Moreover, etifoxine inhibited the decrease in bodyweight, the neurological deficit and the altered locomotor activity induced by TET. At a lower dose (2 <--> 10 mg/kg per day, p.o.), etifoxine did not have any preventive effects. 3. To examine the curative effects of etifoxine, it was administered from the 4th day of TET treatment for 5 consecutive days, when brain oedema was already established. In these experiments, etifoxine (2 <--> 50 mg/kg per day, p.o.) significantly reduced cerebral oedema and the outcomes induced by TET treatment. Moreover, etifoxine reduced the mortality in response to TET treatment. 4. In conclusion, because etifoxine has a good safety profile as an anxiolytic, the results of the present study suggest that it is worth further clinical investigation as a neuroprotectant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.2008.05127.x | DOI Listing |
Alzheimers Dement
December 2024
Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA.
Background: Amyloid related imaging abnormalities (ARIA), a group of neuropathological features seen in anti-amyloid immunotherapy patients, arises partly from CAA (Aβ buildup in blood vessels). Squirrel monkeys (SQMs), developing prominent age-related CAA exceeding brain Aβ, offer a unique NHP model for ARIA study. Evaluating edema-related neurobiological defects (ARIA-E) involves preferential use of T-weighted (T-w) and flow-attenuated inversion recovery (FLAIR) MRI while T*-weighted (T*-w) MRI is better suited for investigating iron-related pathology like microbleeds, hemorrhaging, and iron-homing in plaques.
View Article and Find Full Text PDFBackground: Cerebral amyloid angiopathy (CAA) has been recognized as one of the morphologic hallmarks of Alzheimer disease (AD). The development of new AD drugs has brought unforeseen challenges that manifest as amyloid-related imaging abnormalities (ARIA) appearing as vasogenic edema/effusion (ARIA-E) and cerebral microhemorrhage/hemosiderosis (ARIA-H). The prominence of CAA pathology in aged squirrel monkeys (SQMs), a New World non-human primate model, underlines the importance of advancing this unique species for use in AD and dementia research.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Background: Obesity in midlife, body mass index (BMI) of 30 kg/m or higher, is recognized as a contributor to Alzheimer disease (AD) later in life. Adiposity in visceral tissues such as liver is associated with increased systemic inflammation and impaired cognition. In this study, we aimed to investigate the relationship between MRI-derived Positron Density Fat Fraction (PDFF) and brain histology and neuroinflammation using Diffusion Basis Spectrum Imaging (DBSI) in cognitively normal midlife individuals.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Obesity and abdominal adiposity in midlife are shown to increase the risk of Alzheimer disease. However, it is not clear whether midlife adiposity is associated with increased neuroinflammation. We aimed to investigate the associations of obesity, BMI of 30 kg/m or higher, and abdominal visceral and subcutaneous adipose tissue (VAT and SAT) with brain histology, using diffusion basis spectrum imaging (DBSI) analysis; METHOD: In total, 54 cognitively normal middle-aged subjects (50.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA.
Background: Alzheimer's disease (AD) poses a substantial healthcare challenge. Current immunotherapy targeting beta-amyloid (Aβ) while representing a significant advancement, may be accompanied by potential complications such as amyloid-related imaging abnormalities (ARIA). ARIA monitoring via high-field MRI encounters logistical hurdles, exacerbated by regulatory demands for frequent MRI surveillance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!