The introduction of economic production processes for 1,3-propanediol is a success story for the creation of a new market for a (bulk) chemical. The compound and its favorable properties have long been known; also the fermentation of glycerol to 1,3-propanediol had been described more than 120 years ago. Nevertheless, the product remained a specialty chemical until recently, when two new processes were introduced, providing 1,3-propanediol at a competitive price. Remarkably, one of the processes is in the field of white biotechnology and based on microbial fermentation, converting a renewable carbon source into a bulk chemical. This review covers the most important patents that led to the commercialization of bio-based 1,3-propanediol. Furthermore, some of the recent developments towards a sustainable industry are addressed. Similar questions arise for a variety of products if they are to be produced bio-based in large scale. However, special emphasis is given to 1,3-propanediol production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187220808786240999 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Ciencias Químicas, Dirección de Investigaciones, Universidad Nacional de Asunción, P.O. 1055, San Lorenzo, Paraguay.
Concerns over malnutrition, synthetic additives and post-harvest waste highlight the need for innovation in food technology, turning towards underutilized crops. Plant-based beverages offer sustainable dietary alternatives and the increasing demand for such products makes the exploration of native crops particularly relevant. This study focuses on the development of a beverage derived from the native South American fruit kurugua (Sicana odorifera), combined with chia oil (Salvia hispanica L.
View Article and Find Full Text PDFNanoscale
January 2025
Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
Ferroelectric photovoltaics have attracted increasing attention since their discovery in the 1970s, due to their above-bandgap photovoltage and polarized-light-dependent photocurrent. However, their practical applications have been limited by their weak visible light absorption and low photoconductivity. Intrinsic modification of the material, such as bandgap tuning through chemical doping, has proven effective, but usually leads to the degradation of ferroelectricity.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Switchable order parameters in ferroic materials are essential for functional electronic devices, yet disruptions of the ordering can take the form of planar boundaries or defects that exhibit distinct properties from the bulk, such as electrical (polar) or magnetic (spin) response. Characterizing the structure of these boundaries is challenging due to their confined size and three-dimensional (3D) nature. Here, a chemical antiphase boundary in the highly ordered double perovskite PbMgWO is investigated using multislice electron ptychography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!