The demand for plasmid DNA has increased vastly in response to rapid advances in its use in gene therapy and vaccines. These therapies are based on the same principle, i.e. the introduction of nucleic acids in human/non-human cells receptor to restore, cancel, enhance or introduce a biochemical function. Naked plasmid DNA as a vector has attracted a lot of interest since it offers several advantages over a viral vector, especially weak immunogenicity, better safety and easy to manufacture, but low transfection efficacy. Non-viral gene therapy may require considerable amounts (milligram scale) of pharmaceutical-grade pDNA per patient since the efficacy and duration of gene expression is presently relatively low. Reliance on fermentation, which generates large lysate volumes, for producing the needed quantities of pDNA is becoming more widespread. Through optimization of the biological system, growth environment and the growth mode, improvements can be achieved in biomass productivity, plasmid yield, plasmid quality and production costs. The information on large-scale plasmid production is scarce and usually not available to the scientific community. This review summarizes recent patents and patent applications relating to plasmid upstream processing manufacturing, ranging from plasmid design to growth strategies to produce plasmid-bearing E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187220808786241015 | DOI Listing |
J Chromatogr A
January 2025
Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:
As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!