The search for innovative and clinically-differentiated medicines for the treatment of type 2 diabetes is an active area of research for pharmaceutical companies. The discovery of allosteric Glucokinase (GK) activators in 2003 represents the first time a pharmaceutical agent was used to directly augment the actions of an enzyme by increasing its maximal velocity and substrate affinity. This discovery, coupled with translational medicine which has shown that inactivating and activating GK mutations cause glycemic diseases, has triggered an intensive medicinal chemistry effort in the field of glucokinase activators (GKAs). The antidiabetic effects of GK activators observed in animal models support the notion that these agents act to both augment insulin release from pancreatic beta-cells and suppress hepatic glucose production in the liver. This review describes the unprecedented task of optimizing small molecules in order to affect the appropriate changes in the kinetic parameters of an enzyme. In addition, a pharmacophore model for the various classes of glucokinase activators that have been described in the literature will be presented. Overall, the available data suggests that potent glucokinase activators with the desired effects on the kinetic properties of the enzyme can be designed to achieve strong and persistent antidiabetic effects. GK activators thus represent a promising new treatment for type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156802608786413483 | DOI Listing |
The antihyperglycemic activity of extracellular polysaccharopeptides (ePSP) obtained from Trametes versicolor (TV) strain LH-1 has been demonstrated in hepatic cells and diabetic animals. This study further investigated the mechanisms of T. versicolor-ePSP on regulating glucose metabolism, including insulin signaling molecules and glucose metabolism-associated enzymes, in the liver of rats with type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Endocrinology, Beijing Haidian Hospital, Beijing 100080, China.
Background: Treating diabetes in dialysis patients remains a challenge, with many hypoglycemic drugs requiring dose adjustments or avoidance in these patients.
Case Summary: This report describes an 83-year-old female patient with a 30-year history of type 2 diabetes (T2DM) who had struggled to control her blood sugar for more than a year. She had a history of high blood pressure for 30 years, had undergone continuous ambulatory peritoneal dialysis for more than two years, was 163 cm tall, weighed 77 kg, and had a body mass index of 28.
Lakartidningen
January 2025
professor, överläkare, VO internmedicin, sektionen för diabetologi och endokrinologi, Gävle sjukhus; Centrum för forskning och utveckling, Uppsala universitet/Region Gävleborg.
Type 2 diabetes (T2D) is increasing relentlessly globally, affecting ever younger patients. Many T2D patients do not attain glycemic target levels, indicating a clear need for novel antihyperglycemic drugs. Ideally, these should not only control glycemia, but also halt or slow the progressive loss of beta cells.
View Article and Find Full Text PDFBMJ Open
December 2024
Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, Guangdong, China
Introduction: A variety of hypoglycaemic drugs are used to treat polycystic ovarian syndrome (PCOS), but their efficacy remains insufficient. Glucokinase activators (GKAs) are a unique class of hypoglycaemic medications with emerging potential, notably in significantly reducing insulin resistance (IR). Nevertheless, the efficacy of GKAs in treating PCOS, particularly in the absence or presence of IR, remains uncertain.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.
Unlabelled: Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!