Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress is implicated in the pathogenesis of a number of neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis and stroke in the adult as well as in conditions such as periventricular white matter damage in the neonatal brain. It has also been linked to the disruption of blood brain barrier (BBB) in hypoxic-ischemic injury. Both experimental and clinical results have shown that antioxidants such as melatonin, a neurohormone synthesized and secreted by the pineal gland and edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a newly developed drug, are effective in reducing oxidative stress and are promising neuroprotectants in reducing brain damage. Indeed, the neuroprotective effects of melatonin in many central nervous system (CNS) disease conditions such as amyotrophic lateral sclerosis, PD, AD, ischemic injury, neuropsychiatric disorders and head injury are well documented. Melatonin affords protection to the BBB in hypoxic conditions by suppressing the production of vascular endothelial growth factor and nitric oxide which are known to increase vascular permeability. The protective effects of melatonin against hypoxic damage have also been demonstrated in newborn animals whereby it attenuated damage in different areas of the brain. Furthermore, exogenous administration of melatonin in newborn animals effectively enhanced the surface receptors and antigens on the macrophages/microglia in the CNS indicating its immunoregulatory actions. Edaravone has been shown to reduce oxidative stress, edema, infarct volume, inflammation and apoptosis following ischemic injury of the brain in the adult as well as decrease free radical production in the neonatal brain following hypoxic-ischemic insult. It can counteract toxicity from activated microglia. This review summarizes the clinical and experimental data highlighting the therapeutic potential of melatonin and edaravone in neuroprotection in various disorders of the CNS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/092986708786848640 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!